This document is an unofficial reference manual for \LaTeX, a document preparation system, version of October 2015.

This manual was originally translated from `\LaTeX.HLP` v1.0a in the VMS Help Library. The pre-translation version was written by George D. Greenwade of Sam Houston State University. The \LaTeX 2.09 version was written by Stephen Gilmore. The \LaTeX 2e version was adapted from this by Torsten Martinsen. Karl Berry made further updates and additions, and gratefully acknowledges using `\textit{Hypertext Help with \LaTeX}`, by Sheldon Green, and `\textit{\LaTeX Command Summary}` (for \LaTeX 2.09) by L. Botway and C. Biemesderfer (published by the \TeX Users Group as \TeX\textit{\textsc{\textsc{\textsc{\textsc{\textsc{\textsc{niques}}}}}} number 10), as reference material (no text was directly copied).

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions.
Short Contents

\texttt{L A T E X2e: An unofficial reference manual} 1
1 About this document ... 2
2 Overview of L A T E X .. 3
3 Document classes .. 7
4 Fonts ... 9
5 Layout ... 15
6 Sectioning ... 22
7 Cross references .. 23
8 Environments .. 25
9 Line breaking .. 52
10 Page breaking ... 54
11 Footnotes ... 55
12 Definitions ... 59
13 Counters .. 66
14 Lengths ... 69
15 Making paragraphs .. 71
16 Math formulas ... 73
17 Modes ... 88
18 Page styles .. 89
19 Spaces ... 91
20 Boxes ... 96
21 Special insertions ... 99
22 Splitting the input .. 105
23 Front/back matter .. 106
24 Letters ... 108
25 Terminal input/output ... 112
26 Command line ... 113
A Document templates .. 114
Concept Index .. 117
Command Index ... 123
Table of Contents

\LaTeX{}2e: An unofficial reference manual 1

1 About this document 2

2 Overview of \LaTeX{} 3
 2.1 Starting and ending 3
 2.2 Output files 3
 2.3 \TeX{} engines 4
 2.4 \TeX{} command syntax 5

3 Document classes 7
 3.1 Document class options 7

4 Fonts .. 9
 4.1 Font styles 9
 4.2 Font sizes 11
 4.3 Low-level font commands 11

5 Layout ... 15
 5.1 \texttt{\textbackslash onecolumn} 15
 5.2 \texttt{\textbackslash twocolumn} 15
 5.3 \texttt{\textbackslash flushbottom} 17
 5.4 \texttt{\textbackslash raggedbottom} 17
 5.5 Page layout parameters 17
 5.6 Floats .. 19

6 Sectioning .. 22

7 Cross references 23
 7.1 \texttt{\textbackslash label} 23
 7.2 \texttt{\textbackslash pageref\{key\}} 23
 7.3 \texttt{\textbackslash ref\{key\}} 24
Environments

8.1 abstract .. 25
8.2 array .. 25
8.3 center ... 26
 8.3.1 \centering .. 26
8.4 description .. 27
8.5 displaymath .. 27
8.6 document ... 28
8.7 enumerate .. 29
8.8 eqnarray ... 30
8.9 equation .. 31
8.10 figure ... 31
8.11 filecontents: Write an external file. 32
8.12 flushleft .. 33
 8.12.1 \raggedright ... 33
8.13 flushright ... 33
 8.13.1 \raggedleft ... 33
8.14 itemize ... 33
8.15 letter environment: writing letters 35
8.16 list .. 35
8.17 math .. 36
8.18 minipage ... 37
 8.19.1 \circle .. 38
 8.19.2 \makebox ... 38
 8.19.3 \framebox ... 38
 8.19.4 \dashbox ... 38
 8.19.5 \frame ... 38
 8.19.6 \line ... 39
 8.19.7 \linethickness ... 39
 8.19.8 \thicklines ... 39
 8.19.9 \thinlines .. 39
 8.19.10 \multiput ... 39
 8.19.11 \oval .. 39
 8.19.12 \put ... 40
 8.19.13 \shortstack .. 40
 8.19.14 \vector ... 40
8.20 quotation and quote .. 40
8.21 tabbing .. 41
8.22 table .. 42
8.23 tabular .. 43
 8.23.1 \multicolumn .. 46
 8.23.2 \vline .. 47
 8.23.3 \cline .. 47
 8.23.4 \hline .. 48
8.24 thebibliography .. 48
 8.24.1 \bibitem .. 48
 8.24.2 \cite ... 49
8.24.3 \nocite ... 49
8.24.4 \Using\TeX ... 49
8.25 \theorem .. 49
8.26 \titlepage .. 50
8.27 \verbatim .. 50
8.27.1 \verb .. 50
8.28 \verse .. 50

9 Line breaking ... 52
9.1 \\ .. 52
9.2 \obeycr \& \restorecr ... 52
9.3 \newline ... 52
9.4 \- (discretionary hyphen) 53
9.5 \fussy ... 53
9.6 \sloppy ... 53
9.7 \hyphenation .. 53
9.8 \linebreak \& \nolinebreak 53

10 Page breaking ... 54
10.1 \cleardoublepage ... 54
10.2 \clearpage .. 54
10.3 \newpage .. 54
10.4 \enlargethispage ... 54
10.5 \pagebreak \& \nopagebreak 54

11 Footnotes .. 55
11.1 \footnote .. 55
11.2 \footnotemark ... 56
11.3 \footnotetext ... 56
11.4 Footnotes in a table ... 56
11.5 Footnotes in section headings 57
11.6 Footnotes of footnotes 57
11.7 Multiple references to footnotes 58
11.8 Footnote parameters ... 58

12 Definitions .. 59
12.1 \newcommand \& \renewcommand 59
12.2 \providecommand .. 60
12.3 \newcounter: Allocating a counter 60
12.4 \newlength: Allocating a length 60
12.5 \newsavebox: Allocating a box 61
12.6 \newenvironment \& \renewenvironment 61
12.7 \newtheorem .. 62
12.8 \newfont: Define a new font (obsolete) 64
12.9 \protect .. 65
13 Counters ... 66
 13.1 \alph \Alph \arabic \roman \Roman \fnsymbol: Printing
 counters .. 66
 13.2 \usecounter{counter} 66
 13.3 \value{counter} 67
 13.4 \setcounter{counter}{value} 67
 13.5 \addtocounter{counter}{value} 67
 13.6 \refstepcounter{counter} 68
 13.7 \stepcounter{counter} 68
 13.8 \day \month \year: Predefined counters 68

14 Lengths ... 69
 14.1 Units of length 69
 14.2 \setlength{\len}{value} 70
 14.3 \addtolength{\len}{amount} 70
 14.4 \settodepth ... 70
 14.5 \settoheight ... 70
 14.6 \settowidth{\len}{text} 70
 14.7 Predefined lengths 70

15 Making paragraphs 71
 15.1 \indent .. 71
 15.2 \noindent ... 71
 15.3 \parskip ... 71
 15.4 Marginal notes 71

16 Math formulas 73
 16.1 Subscripts & superscripts 73
 16.2 Math symbols .. 74
 16.3 Math functions ... 84
 16.4 Math accents .. 85
 16.5 Spacing in math mode 86
 16.6 Math miscellany 86

17 Modes ... 88

18 Page styles .. 89
 18.1 \maketitle ... 89
 18.2 \pagenumbering ... 89
 18.3 \pagestyle .. 89
 18.4 \thispagestyle{style} 90
19 Spaces ... 91
 19.1 \hspace ... 91
 19.2 \hfill .. 91
 19.3 \(\text{SPACE})\) and \@ 91
 19.4 \ after a control sequence 92
 19.5 \frenchspacing .. 92
 19.6 \thinspace: Insert 1/6 em 93
 19.7 \/: Insert italic correction 93
 19.8 \hrulefill \dotfill 93
 19.9 \vspace{length} .. 94
 19.10 \vfill .. 94
 19.11 \vspace{length} .. 94

20 Boxes .. 96
 20.1 \mbox{\text} ... 96
 20.2 \fbox and \framebox 96
 20.3 \parbox .. 96
 20.4 \makebox .. 96
 20.5 \savebox .. 97
 20.6 \raisebox .. 97
 20.7 \usebox ... 98
 20.8 \sbox{\boxcmd}{\text} 98

21 Special insertions .. 99
 21.1 Reserved characters 99
 21.2 Text symbols ... 99
 21.3 Accents ... 102
 21.4 Non-English characters 104
 21.5 \rule ... 104
 21.6 \today ... 104

22 Splitting the input 105
 22.1 \include .. 105
 22.2 \includeonly .. 105
 22.3 \input ... 105

23 Front/back matter 106
 23.1 Tables of contents 106
 23.1.1 \addcontentsline 106
 23.1.2 \addtocontents 106
 23.2 Glossaries .. 107
 23.3 Indexes ... 107
24 Letters ... 108
 24.1 \address ... 109
 24.2 \cc .. 109
 24.3 \closing .. 109
 24.4 \encl .. 110
 24.5 \location ... 110
 24.6 \makelabels .. 110
 24.7 \name .. 110
 24.8 \opening .. 111
 24.9 \ps .. 111
 24.10 \signature ... 111
 24.11 \telephone ... 111

25 Terminal input/output 112
 25.1 \typein{cmd}{msg} ... 112
 25.2 \typeout{msg} ... 112

26 Command line ... 113

Appendix A Document templates 114
 A.1 beamer template ... 114
 A.2 book template ... 114
 A.3 tugboat template .. 115

Concept Index ... 117

Command Index ... 123
\LaTeXe: An unofficial reference manual

This document is an unofficial reference manual (version of October 2015) for \LaTeXe, a document preparation system.
1 About this document

This is an unofficial reference manual for the \LaTeX\,2e document preparation system, which is a macro package for the \TeX\ typesetting program (see Chapter 2 [Overview], page 3). This document's home page is http://home.gna.org/latexrefman. That page has links to the current output in various formats, sources, mailing list archives and subscriptions, and other infrastructure.

In this document, we will mostly just use ‘\LaTeX’ rather than ‘\LaTeX\,2e’, since the previous version of \LaTeX\ (2.09) was retired many years ago.

\LaTeX\ is currently maintained by a group of volunteers (http://latex-project.org). The official documentation written by the \LaTeX\ project is available from their web site. This document is completely unofficial and has not been reviewed by the \LaTeX\ maintainers. Do not send bug reports or anything else about this document to them. Instead, please send all comments to latexrefman-discuss@gna.org.

This document is a reference. There is a vast array of other sources of information about \LaTeX, at all levels. Here are a few introductions.

http://ctan.org/pkg/latex-doc-ptr
Two pages of recommended references to \LaTeX\ documentation.

http://ctan.org/pkg/first-latex-doc
Writing your first document, with a bit of both text and math.

http://ctan.org/pkg/usrguide
The guide for document authors that is maintained as part of \LaTeX; there are plenty of others available elsewhere.

http://ctan.org/pkg/lshort
A short introduction to \LaTeX, translated to many languages.

http://tug.org/begin.html
Introduction to the \TeX\ system, including \LaTeX, with further references.
2 Overview of \LaTeX

\LaTeX{} is a system for typesetting documents. It was originally created by Leslie Lamport and is now maintained by a group of volunteers (http://latex-project.org). It is widely used, particularly for complex and technical documents, such as those involving mathematics.

A \LaTeX{} user writes an input file containing text along with interspersed commands, for instance commands describing how the text should be formatted. It is implemented as a set of related commands that interface with Donald E. Knuth’s \TeX{} typesetting program (the technical term is that \LaTeX{} is a macro package for the \TeX{} engine). The user produces the output document by giving that input file to the \TeX{} engine.

The term \LaTeX{} is also sometimes used to mean the language in which the document is marked up, that is, to mean the set of commands available to a \LaTeX{} user.

The name \LaTeX{} is short for “Lamport \TeX{}”. It is pronounced LAH-teck or LAY-teck, or sometimes LAY-tecks. Inside a document, produce the logo with \LaTeX{}. Where use of the logo is not sensible, such as in plain text, write it as ‘LaTeX’.

2.1 Starting and ending

\LaTeX{} files have a simple global structure, with a standard beginning and ending. Here is a “hello, world” example:

\begin{verbatim}
\documentclass{article}
\begin{document}
Hello, \LaTeX{} world.
\end{document}
\end{verbatim}

Here, the ‘article’ is the so-called document class, implemented in a file article.cls. Any document class can be used. A few document classes are defined by \LaTeX{} itself, and vast array of others are widely available. See Chapter 3 [Document classes], page 7.

You can include other \LaTeX{} commands between the \documentclass and the \begin{document} commands. This area is called the preamble.

The \begin{document} ... \end{document} is a so-called environment; the ‘document’ environment (and no others) is required in all \LaTeX{} documents (see Section 8.6 [document], page 28). \LaTeX{} provides many environments itself, and many more are defined separately. See Chapter 8 [Environments], page 25.

The following sections discuss how to produce PDF or other output from a \LaTeX{} input file.

2.2 Output files

\LaTeX{} produces a main output file and at least two accessory files. The main output file’s name ends in either .dvi or .pdf.

.\texttt{dvi} If \LaTeX{} is invoked with the system command \texttt{latex} then it produces a Device Independent file, with extension .dvi. You can view this file with a command such as \texttt{xdvi}, or convert it to a PostScript .ps file with \texttt{dvips} or to a Portable Document Format .pdf file with \texttt{dvipdfmx}. The contents of the file
can be dumped in human-readable form with dvitype. A vast array of other DVI utility programs are available (http://mirror.ctan.org/tex-archive/dviware).

.pdf

If \LaTeX{} is invoked via the system command pdflatex, among other commands (see Section 2.3 [\TeX{} engines], page 4), then the main output is a Portable Document Format (PDF) file. Typically this is a self-contained file, with all fonts and images included.

\LaTeX{} also produces at least two additional files.

.log

This transcript file contains summary information such as a list of loaded packages. It also includes diagnostic messages and perhaps additional information for any errors.

.aux

Auxiliary information is used by \LaTeX{} for things such as cross references. For example, the first time that \LaTeX{} finds a forward reference—a cross reference to something that has not yet appeared in the source—it will appear in the output as a doubled question mark ???. When the referred-to spot does eventually appear in the source then \LaTeX{} writes its location information to this .aux file. On the next invocation, \LaTeX{} reads the location information from this file and uses it to resolve the reference, replacing the double question mark with the remembered location.

\LaTeX{} may produce yet more files, characterized by the filename ending. These include a .lof file that is used to make a list of figures, a .lot file used to make a list of tables, and a .toc file used to make a table of contents. A particular class may create others; the list is open-ended.

2.3 \TeX{} engines

\LaTeX{} is defined to be a set of commands that are run by a \TeX{} implementation (see Chapter 2 [Overview], page 3). This section gives a terse overview of the main programs.

\texttt{latex}

In \TeX{} Live (http://tug.org/texlive), if \LaTeX{} is invoked via either the system command \texttt{latex} or \texttt{pdflatex}, then the pdf\TeX{} engine is run (http://ctan.org/pkg/pdftex). When invoked as \texttt{latex}, the main output is a .dvi file; as \texttt{pdflatex}, the main output is a .pdf file.

pdf\TeX{} incorporates the e-\TeX{} extensions to Knuth’s original program (http://ctan.org/pkg/etex), including additional programming features and bi-directional typesetting, and has plenty of extensions of its own. e-\TeX{} is available on its own as the system command \texttt{etex}, but this is plain \TeX{} (and produces .dvi).

In other \TeX{} distributions, \texttt{latex} may invoke e-\TeX{} rather than pdf\TeX{}. In any case, the e-\TeX{} extensions can be assumed to be available in \LaTeX{}.

\texttt{lualatex}

If \LaTeX{} is invoked via the system command lualatex, the Lua\TeX{} engine is run (http://ctan.org/pkg/lualatex). This program allows code written in the scripting language Lua (http://lualatex.org) to interact with \TeX{}’s
Chapter 2: Overview of \LaTeX

\LaTeX handles UTF-8 Unicode input natively, can handle OpenType and TrueType fonts, and produces a .pdf file by default. There is also dvilualatex to produce a .dvi file, but this is rarely used.

xelatex If \LaTeX is invoked with the system command xelatex, the Xe\LaTeX engine is run (http://tug.org/xetex). Like Lua\LaTeX, Xe\LaTeX natively supports UTF-8 Unicode and TrueType and OpenType fonts, though the implementation is completely different, mainly using external libraries instead of internal code. Xe\LaTeX produces a .pdf file as output; it does not support DVI output.

Internally, Xe\LaTeX creates an .xdv file, a variant of DVI, and translates that to PDF using the (x)dvipdfmx program, but this process is automatic. The .xdv file is only useful for debugging.

Other variants of \LaTeX and \TeX exist, e.g., to provide additional support for Japanese and other languages ([u]p\TeX, http://ctan.org/pkg/ptex, http://ctan.org/pkg/uptex).

2.4 \LaTeX command syntax

In the \LaTeX input file, a command name starts with a backslash character, \. The name itself then consists of either (a) a string of letters or (b) a single non-letter.

\LaTeX commands names are case sensitive so that \texttt{\textbackslash pagebreak} differs from \texttt{\textbackslash Pagebreak} (the latter is not a standard command). Most commands are lowercase, but in any event you must enter all commands in the same case as they are defined.

A command may be followed by zero, one, or more arguments. These arguments may be either required or optional. Required arguments are contained in curly braces, \{...\}. Optional arguments are contained in square brackets, [...] . Generally, but not universally, if the command accepts an optional argument, it comes first, before any required arguments.

Inside of an optional argument, to use the character close square bracket (]) hide it inside curly braces, as in \texttt{\textbackslash item[\texttt{closing bracket \{\}}]). Similarly, if an optional argument comes last, with no required argument after it, then to make the first character of the following text be an open square bracket, hide it inside curly braces.

\LaTeX has the convention that some commands have a * form that is related to the form without a *, such as \texttt{\textbackslash chapter} and \texttt{\textbackslash chapter*}. The exact difference in behavior varies from command to command.

This manual describes all accepted options and *-forms for the commands it covers (barring unintentional omissions, a.k.a. bugs).

Synopsis:

\begin{environment name}
 ...
\end{environment name}

An area of \LaTeX source, inside of which there is a distinct behavior. For instance, for poetry in \LaTeX put the lines between \begin{verse} and \end{verse}.

\begin{verse}
 There once was a man from Nantucket \\
 ...
\end{verse}
The \textit{environment name} at the beginning must exactly match that at the end. This includes the case where \textit{environment name} ends in a star (*); both the \texttt{\textbackslash begin} and \texttt{\textbackslash end} texts must include the star.

Environments may have arguments, including optional arguments. This example produces a table. The first argument is optional (and causes the table to be aligned on its top row) while the second argument is required (it specifies the formatting of columns).

\begin{tabular}{t|l}
.. rows of table ..
\end{tabular}

A command that changes the value, or changes the meaning, of some other command or parameter. For instance, the \texttt{\textbackslash mainmatter} command changes the setting of page numbers from roman numerals to arabic.
3 Document classes

The document’s overall class is defined with this command, which is normally the first command in a \LaTeX source file.

\documentclass[options]{class}

The following document class names are built into \LaTeX. (Many other document classes are available as separate packages; see Chapter 2 [Overview], page 3.)

article For a journal article, a presentation, and miscellaneous general use.

book Full-length books, including chapters and possibly including front matter, such as a preface, and back matter, such as an appendix (see Chapter 23 [Front/back matter], page 106).

letter Mail, optionally including mailing labels (see Chapter 24 [Letters], page 108).

report For documents of length between an article and a book, such as technical reports or theses, which may contain several chapters.

slides For slide presentations—rarely used today. In its place the beamer package is perhaps the most prevalent (see Section A.1 [beamer template], page 114).

Standard options are described in the next section.

3.1 Document class options

You can specify so-called global options or class options to the \documentclass command by enclosing them in square brackets. To specify more than one option, separate them with a comma, as in:

\documentclass[option1,option2,...]{class}

Here is the list of the standard class options.

All of the standard classes except slides accept the following options for selecting the typeface size (default is 10pt):

10pt 11pt 12pt

All of the standard classes accept these options for selecting the paper size (these show height by width):

a4paper 210 by 297 mm (about 8.25 by 11.75 inches)

b5paper 176 by 250 mm (about 7 by 9.875 inches)

executivepaper 7.25 by 10.5 inches

legalpaper 8.5 by 14 inches

letterpaper 8.5 by 11 inches (the default)
When using one of the engines pdflat\TeX, Lua\TeX, or Xe\TeX (see Section 2.3 [\TeX engines], page 4), options other than letterpaper set the print area but you must also set the physical paper size. One way to do that is to put \texttt{pdfpagewidth=\paperwidth} and \texttt{pdfpageheight=\paperheight} in your document’s preamble. The \texttt{geometry} package provides flexible ways of setting the print area and physical page size.

Miscellaneous other options:

- \texttt{draft}: Mark (draft) or do not mark (final) overfull boxes with a black box in the margin; default is final.
- \texttt{fleqn}: Put displayed formulas flush left; default is centered.
- \texttt{landscape}: Selects landscape format; default is portrait.
- \texttt{leqno}: Put equation numbers on the left side of equations; default is the right side.
- \texttt{openbib}: Use “open” bibliography format.
- \texttt{titlepage}: Specifies whether the title page is separate; default depends on the class.
- \texttt{notitlepage}

The following options are not available with the \texttt{slides} class.

- \texttt{onecolumn}
- \texttt{twocolumn}

 Typeset in one or two columns; default is \texttt{onecolumn}.

- \texttt{oneside}
- \texttt{twoside}

 Selects one- or two-sided layout; default is \texttt{oneside}, except that in the \texttt{book} class the default is \texttt{twoside}.

 For one-sided printing, the text is centered on the page. For two-sided printing, the \texttt{evensidemargin (oddsidemargin)} parameter determines the distance on even (odd) numbered pages between the left side of the page and the text’s left margin, with \texttt{oddsidemargin} being 40\% of the difference between \texttt{paperwidth} and \texttt{textwidth}, and \texttt{evensidemargin} is the remainder.

- \texttt{openright}
- \texttt{openany}

 Determines if a chapter should start on a right-hand page; default is \texttt{openright} for \texttt{book}, and \texttt{openany} for \texttt{report}.

The \texttt{slides} class offers the option \texttt{clock} for printing the time at the bottom of each note.

Additional packages are loaded like this:

\begin{verbatim}
\usepackage[options]{pkg}
\end{verbatim}

To specify more than one package, you can separate them with a comma, as in \texttt{\usepackage{pkg1,pkg2,...}}, or use multiple \texttt{\usepackage} commands.

Any options given in the \texttt{\documentclass} command that are unknown by the selected document class are passed on to the packages loaded with \texttt{\usepackage}.
4 Fonts

Two important aspects of selecting a font are specifying a size and a style. The \LaTeX\ commands for doing this are described here.

4.1 Font styles

The following type style commands are supported by \LaTeX.\n
This first group of commands is typically used with an argument, as in \textit{text}. In the table below, the corresponding command in parenthesis is the “declaration form”, which takes no arguments, as in {\itshape text}. The scope of the declaration form lasts until the next type style command or the end of the current group.

These commands, in both the argument form and the declaration form, are cumulative; e.g., you can say either \sffamily\bfseries or \bfseries\sffamily to get bold sans serif.

You can alternatively use an environment form of the declarations; for instance, \begin{ttfamily}...\end{ttfamily}.

These font-switching commands automatically insert italic corrections if needed. (See Section 19.7 [\backslash/], page 93, for the details of italic corrections.) Specifically, they insert the italic correction unless the following character is in the list \nocorrlist, which by default consists of a period and a comma. To suppress the automatic insertion of italic correction, use \nocorr at the start or end of the command argument, such as \textit{\nocorr text} or \textsc{text \nocorr}.

\textrm (\rmfamily) Roman.
\textit (\itshape) Italics.
\textmd (\mdseries) Medium weight (default).
\textbf (\bfseries) Boldface.
\textup (\upshape) Upright (default).
\textsl (\slshape) Slanted.
\textsf (\sffamily) Sans serif.
\textsc (\scshape) Small caps.
\texttt (\ttfamily) Typewriter.
\textnormal (\normalfont) Main document font.
Although it also changes fonts, the \texttt{\textbf{text}} command is semantic, for text to be emphasized, and should not be used as a substitute for \texttt{\textit{text}}. For example, \texttt{\textbf{start text \textbf{middle text} end text}} will result in the start text and end text in italics, but middle text will be in roman.

\LaTeX{} also provides the following commands, which unconditionally switch to the given style, that is, are not cumulative. Also, they are used differently than the above commands: \texttt{\textbf{cmd . . .}} instead of \texttt{cmd{. . .}}. These are two unrelated constructs.

\texttt{bf} Switch to bold face.
\texttt{cal} Switch to calligraphic letters for math.
\texttt{it} Italics.
\texttt{rm} Roman.
\texttt{sc} Small caps.
\texttt{sf} Sans serif.
\texttt{sl} Slanted (oblique).
\texttt{tt} Typewriter (monospace, fixed-width).

The \texttt{em} command is the unconditional version of \textbf{emph}.

(Some people consider the unconditional font-switching commands, such as \texttt{tt}, obsolete and that only the cumulative commands (\texttt{texttt}) should be used. Others think that both sets of commands have their place and sometimes an unconditional font switch is precisely what you want; for one example, see Section 8.4 [description], page 27.)

The following commands are for use in math mode. They are not cumulative, so \texttt{\textbf{mathbf{\textit{symbol}}}} does not create a boldface and italic symbol; instead, it will just be in italics. This is because typically math symbols need consistent typographic treatment, regardless of the surrounding environment.

\texttt{mathrm} Roman, for use in math mode.
\texttt{mathbf} Boldface, for use in math mode.
\texttt{mathsf} Sans serif, for use in math mode.
\texttt{mathit} Typewriter, for use in math mode.
\texttt{\mit} Italics, for use in math mode.
\texttt{mathnormal} For use in math mode, e.g., inside another type style declaration.
\texttt{mathcal} Calligraphic letters, for use in math mode.

In addition, the command \texttt{\textbf{mathversion{bold}}} can be used for switching to bold letters and symbols in formulas. \texttt{\textbf{mathversion{normal}}} restores the default.

Finally, the command \texttt{\textbf{oldstylenums{numerals}}} will typeset so-called "old-style" numerals, which have differing heights and depths (and sometimes widths) from the standard "lining" numerals, which all have the same height as upper-case letters. \LaTeX{}‘s default fonts
support this, and will respect \textbf{but not other styles}; there are no italic old-style numerals in Computer Modern). Many other fonts have old-style numerals also; sometimes the textcomp package must be loaded, and sometimes package options are provided to make them the default. FAQ entry: http://www.tex.ac.uk/cgi-bin/texfaq2html?label=osf.

4.2 Font sizes

The following standard type size commands are supported by \LaTeX. The table shows the command name and the corresponding actual font size used (in points) with the ‘10pt’, ‘11pt’, and ‘12pt’ document size options, respectively (see Section 3.1 [Document class options], page 7).

<table>
<thead>
<tr>
<th>Command</th>
<th>10pt</th>
<th>11pt</th>
<th>12pt</th>
</tr>
</thead>
<tbody>
<tr>
<td>\tiny</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>\scriptsize</td>
<td>7</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>\footnotesize</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>\small</td>
<td>9</td>
<td>10</td>
<td>10.95</td>
</tr>
<tr>
<td>\normalsize</td>
<td>10</td>
<td>10.95</td>
<td>12</td>
</tr>
<tr>
<td>\large</td>
<td>12</td>
<td>12</td>
<td>14.4</td>
</tr>
<tr>
<td>\Large</td>
<td>14.4</td>
<td>14.4</td>
<td>17.28</td>
</tr>
<tr>
<td>\LARGE</td>
<td>17.28</td>
<td>17.28</td>
<td>20.74</td>
</tr>
<tr>
<td>\huge</td>
<td>20.74</td>
<td>20.74</td>
<td>24.88</td>
</tr>
<tr>
<td>\Huge</td>
<td>24.88</td>
<td>24.88</td>
<td>24.88</td>
</tr>
</tbody>
</table>

The commands as listed here are “declaration forms”. The scope of the declaration form lasts until the next type style command or the end of the current group. You can also use the environment form of these commands; for instance, \begin{tiny}...\end{tiny}.

4.3 Low-level font commands

These commands are primarily intended for writers of macros and packages. The commands listed here are only a subset of the available ones.

\fontencoding{encoding}

Select the font encoding, the encoding of the output font. There are a large number of valid encodings. The most common are OT1, Knuth’s original encoding for Computer Modern (the default), and T1, also known as the Cork encoding, which has support for the accented characters used by the most widespread European languages (German, French, Italian, Polish and others), which allows \TeX to hyphenate words containing accented letters.

\fontfamily{family}

Select the font family. The web page http://www.tug.dk/FontCatalogue/ provides one way to browse through many of the fonts easily used with \LaTeX. Here are examples of some common families:

- pag Avant Garde
- fvs Bitstream Vera Sans
- pbk Bookman
Select the font series. A series combines a weight and a width. Typically, a font supports only a few of the possible combinations. Some common combined series values include:

- m Medium (normal)
- b Bold
- c Condensed
- bc Bold condensed
- bx Bold extended

The possible values for weight, individually, are:

- ul Ultra light
- e1 Extra light
- l Light
- s1 Semi light
- m Medium (normal)
- sb Semi bold
- b Bold
- eb Extra bold
- ub Ultra bold

The possible values for width, individually, are (the percentages are just guides and are not followed precisely by all fonts):

- uc Ultra condensed, 50%
- ec Extra condensed, 62.5%
- c Condensed, 75%
sc Semi condensed, 87.5%
m Medium, 100%
sh Semi expanded, 112.5%
x Expanded, 125%
ex Extra expanded, 150%
ux Ultra expanded, 200%

When forming the series string from the weight and width, drop the m that stands for medium weight or medium width, unless both weight and width are m, in which case use just one (‘m’).

\fontshape{shape}
Select font shape. Valid shapes are:

- n Upright (normal)
- it Italic
- sl Slanted (oblique)
- sc Small caps
- ui Upright italics
- ol Outline

The two last shapes are not available for most font families, and small caps are often missing as well.

\fontsize{size}{skip}
Set the font size and the line spacing. The unit of both parameters defaults to points (pt). The line spacing is the nominal vertical space between lines, baseline to baseline. It is stored in the parameter \baselineskip. The default \baselineskip for the Computer Modern typeface is 1.2 times the \fontsize. Changing \baselineskip directly is inadvisable since its value is reset every time a size change happens; see \baselinestretch, next.

\baselinestretch
\LaTeX multiplies the line spacing by the value of the \baselinestretch parameter; the default factor is 1. A change takes effect when \selectfont (see below) is called. You can make line skip changes happen for the entire document by doing \renewcommand{\baselinestretch}{2.0} in the preamble.

However, the best way to double-space a document is to use the setspace package. In addition to offering a number of spacing options, this package keeps the line spacing single-spaced in places where that is typically desirable, such as footnotes and figure captions. See the package documentation.

\linespread{factor}
Equivalent to \renewcommand{\baselinestretch}{factor}, and therefore must be followed by \selectfont to have any effect. Best specified in the preamble, or use the setspace package, as just described.

\selectfont
The effects of the font commands described above do not happen until \selectfont is called, as in \fontfamily{familyname} \selectfont. It is
often useful to put this in a macro:
\newcommand*{\myfont}{\fontfamily{familyname}\selectfont}
(see Section 12.1 [newcommand & \renewcommand], page 59).

\usefont{enc}{family}{series}{shape}
The same as invoking \fontencoding, \fontfamily, \fontseries and
\fontshape with the given parameters, followed by \selectfont. For
example:
\usefont{ot1}{cmr}{m}{n}
5 Layout

Commands for controlling the general page layout.

5.1 \onerocolumn

The \onerocolumn declaration starts a new page and produces single-column output. If the document is given the class option \onerocolumn then this is the default behavior (see Section 3.1 [Document class options], page 7).

This command is fragile (see Section 12.9 [\protect], page 65).

5.2 \twocolumn

Synopsis:

\twocolumn[prelim one column text]

The \twocolumn declaration starts a new page and produces two-column output. If the document is given the class option \twocolumn then this is the default (see Section 3.1 [Document class options], page 7).

If the optional \prelim one column text argument is present, it is typeset in one-column mode before the two-column typesetting starts.

This command is fragile (see Section 12.9 [\protect], page 65).

These parameters control typesetting in two-column output:

\columnsep

The distance between columns. The default is 35pt. Change it with a command such as \setlength{\columnsep}{40pt} You must change it before the two column environment starts; in the preamble is a good place.

\columnseprule

The width of the rule between columns. The rule appears halfway between the two columns. The default is 0pt, meaning that there is no rule. Change it with a command such as \setlength{\columnseprule}{0.4pt}, before the two-column environment starts.

\columnwidth

The width of a single column. In one-column mode this is equal to \textwidth. In two-column mode by default \LaTeX sets the width of each of the two columns to be half of \textwidth minus \columnsep.

In a two-column document, the starred environments \table* and \figure* are two columns wide, whereas the unstarred environments \table and \figure take up only one column (see Section 8.10 [figure], page 31 and see Section 8.22 [table], page 42). \LaTeX places starred floats at the top of a page. The following parameters control float behavior of two-column output.

\dbltopfraction

The maximum fraction at the top of a two-column page that may be occupied by two-column wide floats. The default is 0.7, meaning that the height of a \table* or \figure* environment must not exceed 0.7\texttheight . If the
height of your starred float environment exceeds this then you can take one of the following actions to prevent it from floating all the way to the back of the document:

- Use the \[tp\] location specifier to tell LaTeX to try to put the bulky float on a page by itself, as well as at the top of a page.
- Use the \[t!\] location specifier to override the effect of \dbltopfraction for this particular float.
- Increase the value of \dbltopfraction to a suitably large number, to avoid going to float pages so soon.

You can redefine it, for instance with \renewcommand{\dbltopfraction}{0.9}.

\dblfloatpagefraction
For a float page of two-column wide floats, this is the minimum fraction that must be occupied by floats, limiting the amount of blank space. LaTeX’s default is 0.5. Change it with \renewcommand.

\dblfloatsep
On a float page of two-column wide floats, this length is the distance between floats, at both the top and bottom of the page. The default is 12pt plus2pt minus2pt for a document set at 10pt or 11pt, and 14pt plus2pt minus4pt for a document set at 12pt.

\dbltextfloatsep
This length is the distance between a multi-column float at the top or bottom of a page and the main text. The default is 20pt plus2pt minus4pt.

\dbltopnumber
On a float page of two-column wide floats, this counter gives the maximum number of floats allowed at the top of the page. The LaTeX default is 2.

This example shows the use of the optional argument of \twocolumn to create a title that spans the two-column article:

\documentclass[twocolumn]{article}
\newcommand{\authormark}[1]{#1}
\begin{document}
\twocolumn[\% inside this optional argument goes one-column text\centering\LARGE The Title \\[1.5em]\large Author One\authormark{1}, Author Two\authormark{2}, Author Three\authormark{1} \\[1em]\normalsize\begin{tabular}{p{.2\textwidth}@{\hspace{2em}}p{.2\textwidth}}\authormark{1}Department one &\authormark{2}Department two \\School one &\School two\end{tabular}\\[3em]\% space below title part]

Two column text here.
5.3 \flushbottom

The \flushbottom command can go at any point in the document body. It makes all later pages the same height, stretching the vertical space where necessary to fill out the page.

If \TeX cannot satisfactorily stretch the vertical space in a page then you get a message like 'Underfull \vbox (badness 10000) has occurred while \output is active'. You can change to \raggedbottom (see below). Alternatively, you can try to adjust the textheight to be compatible, or you can add some vertical stretch glue between lines or between paragraphs, as in \setlength{\parskip}{0ex plus0.1ex}. In a final editing stage you can adjust the height of individual pages (see Section 10.4 [\enlargethispage], page 54).

This is the default only if you select the twoside document class option (see Section 3.1 [Document class options], page 7).

5.4 \raggedbottom

The \raggedbottom command can go at any point in the document body. It makes all later pages the natural height of the material on that page; no rubber lengths will be stretched. Thus, in a two-sided document the facing pages may be different heights. See also \flushbottom above.

This is the default unless you select the twoside document class option (see Section 3.1 [Document class options], page 7).

5.5 Page layout parameters

\columnsep
\columnseprule
\columnwidth

The distance between the two columns, the width of a rule between the columns, and the width of the columns, when the document class option \twocolumn is in effect (see Section 3.1 [Document class options], page 7). See Section 5.2 [\twocolumn], page 15.

\headheight

Height of the box that contains the running head. The default in the article, report, and book classes is ‘12pt’, at all type sizes.

\headsep

Vertical distance between the bottom of the header line and the top of the main text. The default in the article and report classes is ‘25pt’. In the book class the default is: if the document is set at 10pt then it is ‘0.25in’, and at 11pt and 12pt it is ‘0.275in’.

\footskip

Distance from the baseline of the last line of text to the baseline of the page footer. The default in the article and report classes is ‘30pt’. In the book class the default is: when the type size is 10pt the default is ‘0.35in’, while at 11pt it is ‘0.38in’, and at 12pt it is ‘30pt’.

\linewidth

Width of the current line, decreased for each nested list (see Section 8.16 [list], page 35). That is, the nominal value for \linewidth is to equal \textwidth
but for each nested list the \textwidth is decreased by the sum of that list’s \leftmargin and \rightmargin (see Section 8.14 [itemize], page 33).

\marginparpush
\marginsep
\marginparwidth
The minimum vertical space between two marginal notes, the horizontal space between the text body and the marginal notes, and the horizontal width of the notes.

Normally marginal notes appear on the outside of the page, but the declaration \reversemarginpar changes that (and \normalmarginpar changes it back).

The defaults for \marginparpush in both book and article classes are: ‘7pt’ if the document is set at 12pt, and ‘5pt’ if the document is set at 11pt or 10pt.

For \marginsep, in article class the default is ‘10pt’ except if the document is set at 10pt and in two-column mode where the default is ‘11pt’.

For \marginsep in book class the default is ‘10pt’ in two-column mode and ‘7pt’ in one-column mode.

For \marginparwidth in both book and article classes, in two-column mode the default is 60\% of \paperwidth – \textwidth, while in one-column mode it is 50\% of that distance.

\oddsidemargin
\evensidemargin
The \oddsidemargin is the extra distance between the left side of the page and the text’s left margin, on odd-numbered pages when the document class option twoside is chosen and on all pages when oneside is in effect. When twoside is in effect, on even-numbered pages the extra distance on the left is evensidemargin.

L\TeX’s default is that \oddsidemargin is 40\% of the difference between \paperwidth and \textwidth, and \evensidemargin is the remainder.

\paperheight
The height of the paper, as distinct from the height of the print area. It is normally set with a document class option, as in \texttt{\documentclass[a4paper]{article}} (see Section 3.1 [Document class options], page 7).

\paperwidth
The width of the paper, as distinct from the width of the print area. It is normally set with a document class option, as in \texttt{\documentclass[a4paper]{article}} (see Section 3.1 [Document class options], page 7).

\textheight
The normal vertical height of the page body. If the document is set at a nominal type size of 10pt then for an article or report the default is ‘43\baselineskip’, while for a book it is ‘41\baselineskip’. At a type size of 11pt the default is ‘38\baselineskip’ for all document classes. At 12pt it is ‘36\baselineskip’ for all classes.
\textwidth

The full horizontal width of the entire page body. For an article or report document, the default is ‘345pt’ when the chosen type size is 10pt, the default is ‘360pt’ at 11pt, and it is ‘390pt’ at 12pt. For a book document, the default is ‘4.5in’ at a type size of 10pt, and ‘5in’ at 11pt or 12pt.

In multi-column output, \textwidth remains the width of the entire page body, while \columnwidth is the width of one column (see Section 5.2 [\twocolumn], page 15).

In lists (see Section 8.16 [list], page 35), \textwidth remains the width of the entire page body (and \columnwidth the width of the entire column), while \linewidth may decrease for nested lists.

Inside a minipage (see Section 8.18 [minipage], page 36) or \parbox (see Section 20.5 [\parbox], page 97), all the width-related parameters are set to the specified width, and revert to their normal values at the end of the minipage or \parbox.

This entry is included for completeness: \hsize is the TEX primitive parameter used when text is broken into lines. It should not be used in normal \LaTeX documents.

\topmargin

Space between the top of the \TeX page (one inch from the top of the paper, by default) and the top of the header. The value is computed based on many other parameters: \paperheight − 2in − \headheight − \headsep − \textheight − \footskip, and then divided by two.

\topskip

Minimum distance between the top of the page body and the baseline of the first line of text. For the standard classes, the default is the same as the font size, e.g., ‘10pt’ at a type size of 10pt.

5.6 Floats

Some typographic elements, such as figures and tables, cannot be broken across pages. They must be typeset outside of the normal flow of text, for instance floating to the top of a later page.

\LaTeX can have a number of different classes of floating material. The default is the two classes, figure (see Section 8.10 [\figure], page 31) and table (see Section 8.22 [\table], page 42), but you can create a new class with the package float.

Within any one float class \LaTeX always respects the order, so that the first figure in a document source must be typeset before the second figure. However, \LaTeX may mix the classes, so it can happen that while the first table appears in the source before the first figure, it appears in the output after it.

The placement of floats is subject to parameters, given below, that limit the number of floats that can appear at the top of a page, and the bottom, etc. If so many floats are queued up that the limits prevent them all from fitting on a page then \LaTeX places what it can and defers the rest to the next page. In this way, floats may be typeset far from their place in the source. In particular, a float that is big can migrate to the end of the document.
But then because all floats in a class must appear in sequential order, every subsequent float in that class also appears at the end.

In addition to changing the parameters, for each float you can tweak where the float placement algorithm tries to place it by using its `placement` argument. The possible values are a sequence of the letters below. The default for both `figure` and `table`, in both `article` and `book` classes, is `tbp`.

- **t** (Top)—at the top of a text page.
- **b** (Bottom)—at the bottom of a text page. (However, `b` is not allowed for full-width floats (`figure*`) with double-column output. To ameliorate this, use the `stfloats` or `dblfloatfix` package, but see the discussion at caveats in the FAQ: http://www.tex.ac.uk/cgi-bin/texfaq2html?label=2colfloat.
- **h** (Here)—at the position in the text where the `figure` environment appears. However, `h` is not allowed by itself; `t` is automatically added. To absolutely force a float to appear “here”, you can \usepackage{float} and use the `H` specifier which it defines. For further discussion, see the FAQ entry at http://www.tex.ac.uk/cgi-bin/texfaq2html?label=figurehere.
- **p** (Page of floats)—on a separate float page, which is a page containing no text, only floats.
- **!** Used in addition to one of the above; for this float only, \LaTeX{} ignores the restrictions on both the number of floats that can appear and the relative amounts of float and non-float text on the page. The `!` specifier does not mean “put the float here”; see above.

Note: the order in which letters appear in the `placement` argument does not change the order in which \LaTeX{} tries to place the float; for instance, `btp` has the same effect as `tbp`. All that `placement` does is that if a letter is not present then the algorithm does not try that location. Thus, \LaTeX{}’s default of `tbp` is to try every location except placing the float where it occurs in the source.

To prevent \LaTeX{} from moving floats to the end of the document or a chapter you can use a `\clearpage` command to start a new page and insert all pending floats. If a pagebreak is undesirable then you can use the `afterpage` package and issue `\afterpage{\clearpage}`. This will wait until the current page is finished and then flush all outstanding floats.

\LaTeX{} can typeset a float before where it appears in the source (although on the same output page) if there is a `t` specifier in the `placement` parameter. If this is not desired, and deleting the `t` is not acceptable as it keeps the float from being placed at the top of the next page, then you can prevent it by either using the `flafter` package or using the command `\suppressfloats[t]`, which causes floats for the top position on this page to moved to the next page.

Parameters relating to fractions of pages occupied by float and non-float text (change them with `\renewcommand{parameter}{decimal between 0 and 1}`):

- **\bottomfraction**
 The maximum fraction of the page allowed to be occupied by floats at the bottom; default ‘.3’.
\texttt{\textbackslash floatpagefraction}

The minimum fraction of a float page that must be occupied by floats; default ‘.5’.

\texttt{\textbackslash textfraction}

Minimum fraction of a page that must be text; if floats take up too much space to preserve this much text, floats will be moved to a different page. The default is ‘.2’.

\texttt{\textbackslash topfraction}

Maximum fraction at the top of a page that may be occupied before floats; default ‘.7’.

Parameters relating to vertical space around floats (change them with \texttt{\textbackslash setlength\{}\texttt{parameter}\{}\texttt{\{}length\ expression\}}):

\texttt{\textbackslash floatsep}

Space between floats at the top or bottom of a page; default ‘12pt plus2pt minus2pt’.

\texttt{\textbackslash intextsep}

Space above and below a float in the middle of the main text; default ‘12pt plus2pt minus2pt’ for 10 point and 11 point documents, and ‘14pt plus4pt minus4pt’ for 12 point documents.

\texttt{\textbackslash textfloatsep}

Space between the last (first) float at the top (bottom) of a page; default ‘20pt plus2pt minus4pt’.

Counters relating to the number of floats on a page (change them with \texttt{\textbackslash setcounter\{}\texttt{ctrname}\{}\texttt{\{}natural\ number\}}):

\texttt{bottomnumber}

Maximum number of floats that can appear at the bottom of a text page; default 1.

\texttt{dbltopnumber}

Maximum number of full-sized floats that can appear at the top of a two-column page; default 2.

\texttt{topnumber}

Maximum number of floats that can appear at the top of a text page; default 2.

\texttt{totalnumber}

Maximum number of floats that can appear on a text page; default 3.

The principal \TeX\ FAQ entry relating to floats \url{http://www.tex.ac.uk/cgi-bin/texfaq2html?label=floats} contains suggestions for relaxing \LaTeX\’s default parameters to reduce the problem of floats being pushed to the end. A full explanation of the float placement algorithm is Frank Mittelbach’s article “How to influence the position of float environments like figure and table in \LaTeX?” \url{http://latex-project.org/papers/tb111mitt-float.pdf}.
6 Sectioning

Sectioning commands provide the means to structure your text into units:
\part
\chapter \textit{(report and book class only)}
\section
\subsection
\subsubsection
\paragraph
\subparagraph

All sectioning commands take the same general form, e.g.,
\chapter[toctitle]{title}

In addition to providing the heading \textit{title} in the main text, the section title can appear in two other places:
1. The table of contents.
2. The running head at the top of the page.

You may not want the same text in these places as in the main text. To handle this, the sectioning commands have an optional argument \textit{toctitle} that, when given, specifies the text for these other places.

Also, all sectioning commands have \textit{*}-forms that print \textit{title} as usual, but do not include a number and do not make an entry in the table of contents. For instance:
\section*{Preamble}

The \texttt{appendix} command changes the way following sectional units are numbered. The \texttt{appendix} command itself generates no text and does not affect the numbering of parts. The normal use of this command is something like
\chapter{A Chapter}
\appendix
\chapter{The First Appendix}

The \texttt{secnumdepth} counter controls printing of section numbers. The setting\setcounter{secnumdepth}{level}
suppresses heading numbers at any depth > \texttt{level}, where \texttt{chapter} is level zero. (See Section 13.4 \texttt{[setcounter]}, page 67.)
Chapter 7: Cross references

One reason for numbering things like figures and equations is to refer the reader to them, as in “See Figure 3 for more details.”

7.1 \label

Synopsis:

\label{key}

A \label command appearing in ordinary text assigns to key the number of the current sectional unit; one appearing inside a numbered environment assigns that number to key. The assigned number can be retrieved with the \ref{key} command (see Section 7.3 \ref, page 24).

Thus, in the example below the key sec:test holds the number of the current section and the key fig:test that of the figure. (Incidentally, labels must appear after captions in figures and tables.)

\section{section name}
\label{sec:test}
This is Section\ref{sec:test}.
\begin{figure}
...\caption{caption text}
\label{fig:test}
\end{figure}
See Figure\ref{fig:test}.

A key name can consist of any sequence of letters, digits, or common punctuation characters. Upper and lowercase letters are distinguished, as usual.

Although the name can be more or less anything, a common convention is to use labels consisting of a prefix and a suffix separated by a colon or period. This helps to avoid accidentally creating two labels with the same name. Some commonly-used prefixes:

- \texttt{ch} for chapters
- \texttt{sec} for lower-level sectioning commands
- \texttt{fig} for figures
- \texttt{tab} for tables
- \texttt{eq} for equations

Thus, a label for a figure would look like \texttt{fig:test} or \texttt{fig.test}.

7.2 \pageref{key}

Synopsis:

\pageref{key}

The \pageref{key} command produces the page number of the place in the text where the corresponding \label{key} command appears.
7.3 \ref\{key\}

Synopsis:
\ref\{key\}

The \ref command produces the number of the sectional unit, equation, footnote, figure, \ldots, of the corresponding \label command (see Section 7.1 \ref\{label\}, page 23). It does not produce any text, such as the word ‘Section’ or ‘Figure’, just the bare number itself.
8 Environments

\LaTeX{} provides many environments for marking off certain text. Each environment begins and ends in the same manner:

\begin{envname}
...
\end{envname}

8.1 abstract

Synopsis:

\begin{abstract}
...
\end{abstract}

Environment for producing an abstract, possibly of multiple paragraphs.

8.2 array

Synopsis:

\begin{array}{cols}
column 1 entry & column 2 entry \ldots & column n entry \\
... \end{array}

or

\begin{array}[pos]{cols}
column 1 entry & column 2 entry \ldots & column n entry \\
... \end{array}

Produce a mathematical array. This environment can only be used in math mode, and normally appears within a displayed mathematics environment such as equation (see Section 8.9 [equation], page 31). Column entries are separated by an ampersand (&). Rows are terminated with double-backslashes (\\) (see Section 9.1 [\\], page 52).

The required argument cols describes the number of columns, their alignment, and the formatting of the intercolumn regions. See Section 8.23 [tabular], page 43 for the complete description of cols, and of the other common features of the two environments, including the optional pos argument.

There are two ways that array diverges from tabular. The first is that array entries are typeset in mathematics mode, in textstyle (except if the cols definition specifies the column with @p{..}, which causes the entry to be typeset in text mode). The second is that, instead of tabular’s parameter \tabcolsep, \LaTeX{}’s intercolumn space in an array is governed by \arraycolsep which gives half the width between columns. The default for this is ’5pt’.

To obtain arrays with braces the standard is to use the amsmath package. It comes with environments pmatrix for an array surrounded by parentheses (..), bmatrix for an array surrounded by square brackets [..], Bmatrix for an array surrounded by curly braces {..},
for an array surrounded by vertical bars |..|, and \texttt{Vmatrix} for an array surrounded by double vertical bars ||..||, along with a number of other array constructs.

Here is an example of an array:

\begin{equation}
\begin{array}{cr}
\sqrt{y} & 12.3 \\
x^2 & 3.4
\end{array}
\end{equation}

8.3 \texttt{center}

Synopsis:

\begin{center}
.. text ..
\end{center}

Environment to create a sequence of lines that are centered within the left and right margins on the current page. If the text in the environment body is too long to fit on a line, \LaTeX{} will insert line breaks that avoid hyphenation and avoid stretching or shrinking any interword space. To force a line break at a particular spot use double-backslash \\
(see Section 9.1 [\ref{\theequation}]), page 52).

This environment inserts space above and below the text body. See Section 8.3.1 [\texttt{centering}], page 26 to avoid such space, for example inside a \texttt{figure} environment.

In this example, depending on the line width, \LaTeX{} may choose a break for the part before the double backslash, will center the line or two, then will break at the double backslash, and will center the ending.

\begin{center}
My father considered that anyone who went to chapel and didn't drink alcohol was not to be tolerated. \\
I grew up in that belief. --Richard Burton
\end{center}

A double backslash after the final line is optional.

8.3.1 \texttt{centering}

Declaration that causes material in its scope to be centered. It is most often used inside an environment such as \texttt{figure}, or in a \texttt{parbox}.

Unlike the \texttt{center} environment, the \texttt{centering} command does not add vertical space above and below the text.

It also does not start a new paragraph; it simply changes how \LaTeX{} formats paragraph units. If \texttt{ww \{\texttt{centering xx} \\ yy\} zz} is surrounded by blank lines then \LaTeX{} will create a paragraph whose first line '\texttt{ww xx}' is centered and whose second line, not centered, contains '\texttt{yy zz}'. Usually what is desired is for the scope of the declaration to contain a blank line or the \texttt{end} command of an environment such as \texttt{figure} or \texttt{table} that ends the paragraph unit. Thus, if \texttt{\{\texttt{centering xx} \\ yy\texttt{par} \} zz} is surrounded by blank lines then it makes
a new paragraph with two centered lines ‘xx’ and ‘yy’, followed by a new paragraph with ‘zz’ that is formatted as usual. See also the following example.

This example’s `\centering` causes the graphic to be horizontally centered.

```
\begin{figure}
\centering
\includegraphics[width=0.6\textwidth]{ctan_lion.png}
\caption{CTAN Lion} \label{fig:CTANLion}
\end{figure}
```

The scope of the `\centering` ends with the `\end{figure}`.

8.4 description

Synopsis:

```
\begin{description}
\item [first label] text of first item
\item [second label] text of second item
... 
\end{description}
```

Environment to make a labelled list of items. Each item’s label is typeset in bold, flush-left. Each item’s text may contain multiple paragraphs. Although the labels on the items are optional there is no sensible default, so all items should have labels.

The list consists of at least one item; see ⟨undefined⟩ [item], page ⟨undefined⟩ (having no items causes the LaTeX error ‘Something’s wrong--perhaps a missing `item’). Each item is produced with an `item` command.

Since the labels are in bold style, if the label text calls for a font change given in argument style (see Section 4.1 [Font styles], page 9) then it will come out bold. For instance, if the label text calls for typewriter with `item[\texttt{label text}]` then it will appear in bold typewriter, if that is available. The simplest way to get non-bolded typewriter is to use declaritive style `item[\texttt{label text}]`. Similarly, get normal text use `item[\texttt{label text}]`.

For other major LaTeX labelled list environments, see Section 8.14 [itemize], page 33 and Section 8.7 [enumerate], page 29. For information about customizing list layout, see Section 8.16 [list], page 35; also, the package `enumitem` is useful for this.

This example shows the environment used for a sequence of definitions.

```
\begin{definition}
\item[lama] A priest.
\item[llama] A beast.
\end{definition}
```

8.5 displaymath

Synopsis:

```
\begin{displaymath}
.. \text{math text} ...
\end{displaymath}
```
Environment to typeset the math text on its own line, in display style and centered. To make the text be flush-left use the global option \texttt{fleqn}; see Section 3.1 [Document class options], page 7.

\LaTeX{} will not break the math text across lines.

In the \texttt{displaymath} environment no equation number is added to the math text. One way to get an equation number is to use the \texttt{equation} environment (see Section 8.9 [equation], page 31).

Note that the \texttt{amsmath} package has extensive displayed equation facilities. Those facilities are the best approach for such output in new documents. For example, there are a number of options in that package for having math text broken across lines.

The construct \texttt{\}..math text..\} is essentially a synonym for \texttt{\begin{displaymath}..math text..\end{displaymath}} but the latter is easier to work with in the source file; for instance, searching for a square bracket may get false positives but the word \texttt{displaymath} will likely be unique. (The construct \texttt{$$..math text..$$} from Plain \TeX{} is sometimes mistakenly used as a synonym for \texttt{displaymath}. It is not a synonym, because the \texttt{displaymath} environment checks that it isn’t started in math mode and that it ends in math mode begun by the matching environment start, because the \texttt{displaymath} environment has different vertical spacing, and because the \texttt{displaymath} environment honors the \texttt{fleqn} option.)

The output from this example is centered and alone on its line.

\begin{displaymath}
\int_1^2 x^2\,dx=7/3
\end{displaymath}

Also, the integral sign is larger than the inline version \texttt{(\int_1^2 x^2\,dx=7/3 \texttt{\} produces.}

8.6 document

The \texttt{document} environment encloses the entire body of a document. It is required in every \LaTeX{} document. See Section 2.1 [Starting and ending], page 3.

Synopsis:

\texttt{\AtBeginDocument\{code\}}

Save \texttt{code} and execute it when \texttt{\begin{document}} is executed, at the very end of the preamble. The code is executed after the font selection tables have been set up, so the normal font for the document is the current font. However, the code is executed as part of the preamble so you cannot do any typesetting with it.

You can issue this command more than once; the successive code lines will be executed in the order that you gave them.

Synopsis:

\texttt{\AtEndDocument\{code\}}

Save \texttt{code} and execute it near the end of the document. Specifically, it is executed when \texttt{\end{document}} is executed, before the final page is finished and before any leftover floating environments are processed. If you want some of the code to be executed after these two processes then include a \texttt{\clearpage} at the appropriate point in \texttt{code}.
You can issue this command more than once; the successive code lines will be executed in the order that you gave them.

8.7 enumerate

Synopsis:

\begin{enumerate}
\item [first label] text of first item
\item [second label] text of second item
...
\end{enumerate}

Environment to produce a numbered list of items. The format of the label numbering depends on whether this environment is nested within another; see below.

The list consists of at least one item. Having no items causes the \LaTeX error ‘Something’s wrong--perhaps a missing \item’. Each item is produced with an \item command.

This example lists the top two finishers in the 1908 Olympic marathon.

\begin{enumerate}
\item Johnny Hayes (USA)
\item Charles Hefferon (RSA)
\end{enumerate}

Enumerations may be nested within a paragraph-making environment, including \itemize (see Section 8.14 \itemize, page 33), \description (see Section 8.4 \description, page 27) and \enumerate, up to four levels deep. The format of the label produced depends on the place in the nesting. This gives \LaTeX’s default for the format at each nesting level (where 1 is the outermost level):

1. arabic number followed by a period: ‘1.’, ‘2.’, ...
2. lower case letter inside parentheses: ‘(a)’, ‘(b)’ ...
3. lower case roman numeral followed by a period: ‘i.’, ‘ii.’, ...
4. upper case letter followed by a period: ‘A.’, ‘B.’, ...

The \enumerate environment uses the counters \texttt{\enumerate} through \texttt{\enumiv} counters (see Chapter 13 [Counters], page 66). If you use the optional argument to \texttt{\item} then the counter is not incremented for that item (see ⟨undefined⟩ \item, page ⟨undefined⟩).

To change the format of the label use \texttt{\renewcommand} (see Section 12.1 \texttt{\newcommand} \& \texttt{\renewcommand}, page 59) on the commands \texttt{\labelenumi} through \texttt{\labelenumiv}. For instance, this first level list will be labelled with uppercase letters, in boldface, and without a trailing period:

\renewcommand{\labelenumi}{\textbf{\Alph{enumi}}} \\
\begin{enumerate}
\item eI
\item bi:
\item si:
\end{enumerate}
For a list of counter-labelling commands like \Alph see Section 13.1 [\alph \Alph \arabic \roman \Roman \fnsymbol], page 66.

For more on customizing the layout see Section 8.16 [list], page 35. Also, the package \texttt{enumitem} is useful for this.

\section*{8.8 eqnarray}

First, a caveat: the \texttt{eqnarray} environment is depreciated. It has infelicities that cannot be overcome, including spacing that is inconsistent with other mathematics elements (see the article "Avoid eqnarray!" by Lars Madsen \url{http://tug.org/TUGboat/tb33-1/tb103madsen.pdf}). New documents should include the \texttt{amsmath} package and use the displayed mathematics environments provided there, such as the \texttt{align} environment.

Nevertheless, for completeness and for a reference when working with old documents, a synopsis:

\begin{eqnarray}
\text{first formula left} & \text{first formula middle} & \text{first formula right} \\
... \\
\end{eqnarray}

or

\begin{eqnarray*}
\text{first formula left} & \text{first formula middle} & \text{first formula right} \\
... \\
\end{eqnarray*}

Display a sequence of equations or inequalities. The left and right sides are typeset in display mode, while the middle is typeset in text mode.

It is similar to a three-column \texttt{array} environment, with items within a row separated by an ampersand (\&), and with rows separated by double backslash (\\). The starred form of line break (\texttt{*}) can also be used to separate equations, and will disallow a page break there (see Section 9.1 [\\], page 52).

The unstarred form \texttt{eqnarray} places an equation number on every line (using the \texttt{equation} counter), unless that line contains a \texttt{\nonumber} command. The starred form \texttt{eqnarray*} omits equation numbering, while otherwise being the same.

The command \texttt{\lefteqn} is used for splitting long formulas across lines. It typesets its argument in display style flush left in a box of zero width.

This example shows three lines. The first two lines make an inequality, while the third line has not entry on the left side.

\begin{eqnarray*}
\text{\lefteqn{x_1+x_2+\ldots+x_n}} & \leq & y_1+y_2+\ldots+y_n \\
& \geq & z+y_3+\ldots+y_n \\
\end{eqnarray*}
8.9 equation

Synopsis:

\begin{equation}
 \text{math text}
\end{equation}

Make a displaymath environment (see Section 8.5 [displaymath], page 27) with an equation number in the right margin.

The equation number is generated using the equation counter.

Note that the amsmath package has extensive displayed equation facilities. Those facilities are the best approach for such output in new documents.

8.10 figure

Synopsis:

\begin{figure}[placement]
 \begin{figure*}[placement]
 \caption[loftitle]{title}
 \label{label}
 \end{figure}

A class of floats (see Section 5.6 [Floats], page 19). Because they cannot be split across pages, they are not typeset in sequence with the normal text but instead are “floated” to a convenient place, such as the top of a following page.

For the possible values of placement and their effect on the float placement algorithm, see Section 5.6 [Floats], page 19.

The starred form figure* is used when a document is in double-column mode (see Section 5.2 [twocolumn], page 15). It produces a figure that spans both columns, at the top of the page. To add the possibility of placing at a page bottom see the discussion of placement b in Section 5.6 [Floats], page 19.

The figure body is typeset in a parbox of width \textwidth and so it can contain text, commands, etc.

The label is optional; it is used for cross-references (see Chapter 7 [Cross references], page 23). The optional caption command specifies caption text for the figure. By default it is numbered. If loftitle is present, it is used in the list of figures instead of title (see Section 23.1 [Tables of contents], page 106).

This example makes a figure out of a graphic. It requires one of the packages graphics or graphicx. The graphic, with its caption, will be placed at the top of a page or, if it is pushed to the end of the document, on a page of floats.
8.11 filecontents: Write an external file

Synopsis:

\begin{filecontents}{filename}
 text
\end{filecontents}

or

\begin{filecontents*}{filename}
 text
\end{filecontents*}

Create a file named \textit{filename} and fill it with \textit{text}. The unstarred version of the environment \texttt{filecontents} prefixes the content of the created file with a header; see the example below. The starred version \texttt{filecontents*} does not include the header.

This environment can be used anywhere in the preamble, although it often appears before the \texttt{documentclass} command. It is typically used when a source file requires a nonstandard style or class file. The environment will write that file to the directory containing the source and thus make the source file self-contained. Another use is to include \texttt{bib} references in the file, again to make it self-contained.

The environment checks whether a file of that name already exists and if so, does not do anything. There is a \texttt{filecontents} package that redefines the \texttt{filecontents} environment so that instead of doing nothing in that case, it will overwrite the existing file.

For example, this document

\documentclass{article}
\begin{filecontents}{JH.sty}
 \newcommand{\myname}{Jim Hef{}feron}
\end{filecontents}
\usepackage{JH}
\begin{document}
 Article by \myname. \\
\end{document}

produces this file \texttt{JH.sty}.

\begin{verbatim}
\% LaTeX2e file \texttt{JH.sty}
\% generated by the \texttt{filecontents} environment
\% from source \texttt{test} on 2015/10/12.
\%
 \newcommand{\myname}{Jim Hef{}feron}
\end{verbatim}
8.12 flushleft

\begin{flushleft}
line1 \\
line2 \\
... \\
\end{flushleft}

The flushleft environment allows you to create a paragraph consisting of lines that are flush to the left-hand margin and ragged right. Each line must be terminated with the string \.

8.12.1 \raggedright

The \raggedright declaration corresponds to the flushleft environment. This declaration can be used inside an environment such as quote or in a parbox.

Unlike the flushleft environment, the \raggedright command does not start a new paragraph; it only changes how \LaTeX\ formats paragraph units. To affect a paragraph unit’s format, the scope of the declaration must contain the blank line or \end command that ends the paragraph unit.

8.13 flushright

\begin{flushright}
line1 \\
line2 \\
... \\
\end{flushright}

The flushright environment allows you to create a paragraph consisting of lines that are flush to the right-hand margin and ragged left. Each line must be terminated with the control sequence \.

8.13.1 \raggedleft

The \raggedleft declaration corresponds to the flushright environment. This declaration can be used inside an environment such as quote or in a parbox.

Unlike the flushright environment, the \raggedleft command does not start a new paragraph; it only changes how \LaTeX\ formats paragraph units. To affect a paragraph unit’s format, the scope of the declaration must contain the blank line or \end command that ends the paragraph unit.

8.14 itemize

Synopsis:

\begin{itemize}
\item item1
\item item2
... \\
\end{itemize}
The \texttt{itemize} environment produces an “unordered”, “bulleted” list. Itemizations can be nested within one another, up to four levels deep. They can also be nested within other paragraph-making environments, such as \texttt{enumerate} (see Section 8.7 [enumerate], page 29).

Each item of an \texttt{itemize} list begins with an \texttt{\item} command. There must be at least one \texttt{\item} command within the environment.

By default, the marks at each level look like this:

1. • (bullet)
2. -- (bold en-dash)
3. * (asterisk)
4. · (centered dot)

The \texttt{itemize} environment uses the commands \texttt{\labelitemi} through \texttt{\labelitemiv} to produce the default label. So, you can use \texttt{\renewcommand} to change the labels. For instance, to have the first level use diamonds:

\begin{verbatim}
\renewcommand{\labelitemi}{\diamond}
\end{verbatim}

The \texttt{\leftmargini} through \texttt{\leftmarginvi} parameters define the distance between the left margin of the enclosing environment and the left margin of the list. By convention, \texttt{\leftmargin} is set to the appropriate \texttt{\leftmarginN} when a new level of nesting is entered.

The defaults vary from ‘.5em’ (highest levels of nesting) to ‘2.5em’ (first level), and are a bit reduced in two-column mode. This example greatly reduces the margin space for outermost lists:

\begin{verbatim}
\setlength{\leftmargini}{1.25em} % default 2.5em
\end{verbatim}

Some parameters that affect list formatting:

\texttt{\itemindent}
Extra indentation before each item in a list; default zero.

\texttt{\labelsep}
Space between the label and text of an item; default ‘.5em’.

\texttt{\labelwidth}
Width of the label; default ‘2em’, or ‘1.5em’ in two-column mode.

\texttt{\listparindent}
Extra indentation added to second and subsequent paragraphs within a list item; default ‘0pt’.

\texttt{\rightmargin}
Horizontal distance between the right margin of the list and the enclosing environment; default ‘0pt’, except in the quote, quotation, and verse environments, where it is set equal to \texttt{\leftmargin}.

Parameters affecting vertical spacing between list items (rather loose, by default).

\texttt{\itemsep}

\texttt{\parsep}
Extra vertical space between paragraphs within a list item. Defaults are the same as \texttt{\itemsep}.

\topsep Vertical space between the first item and the preceding paragraph. For top-level lists, the default is 8pt plus2pt minus4pt for 10pt documents, 9pt plus3pt minus5pt for 11pt, and 10pt plus4pt minus6pt for 12pt. These are reduced for nested lists.

\partopsep Extra space added to \topsep when the list environment starts a paragraph. The default is 2pt plus1pt minus1pt for 10pt documents, 3pt plus1pt minus1pt for 11pt, and 3pt plus2pt minus2pt for 12pt.

Especially for lists with short items, it may be desirable to elide space between items. Here is an example defining an itemize* environment with no extra spacing between items, or between paragraphs within a single item (\parskip is not list-specific, see Section 15.3 [\parskip], page 71):
\begin{verbatim}
\newenvironment{itemize*} {
\begin{itemize}\
\setlength{\itemsep}{0pt}\
\setlength{\parsep}{0pt}}\
\setlength{\parskip}{0pt}}\
\end{itemize}
\end{verbatim}

8.15 letter environment: writing letters

This environment is used for creating letters. See Chapter 24 [Letters], page 108.

8.16 list

The list environment is a generic environment which is used for defining many of the more specific environments. It is seldom used in documents, but often in macros.

\begin{verbatim}
\begin{list}{\labeling}{\spacing}
 \item item1
 \item item2
 \ldots
\end{list}
\end{verbatim}

The mandatory \labeling argument specifies how items should be labelled (unless the optional argument is supplied to \item). This argument is a piece of text that is inserted in a box to form the label. It can and usually does contain other \TeX commands.

The mandatory \spacing argument contains commands to change the spacing parameters for the list. This argument will most often be empty, i.e., {}, which leaves the default spacing.

The width used for typesetting the list items is specified by \linewidth (see Section 5.5 [Page layout parameters], page 17).

Synopsis:

\item text of item

or

\item[optional label] text of item
An entry in a list. The entries are prefixed by a label, whose default depends on the list type.

Because the optional argument *optional label* is surrounded by square brackets ([and]), to use square brackets inside the optional argument you must hide them inside curly braces, as in \item[Close square bracket, \{\}]. Similarly, to use an open square bracket as first character in the text of the item, also hide it inside curly braces. See Section 2.4 [*\LaTeX* command syntax], page 5.

In this example the *enumerate* list has two items that use the default label and one that uses the optional label.

\begin{enumerate}
\item Moe
\item[sometimes] Shemp
\item Larry
\end{enumerate}

The first item is labelled ‘1.’, the second item is labelled ‘sometimes’, and the third item is labelled ‘2.’ (note that, because of the optional label in the second item, the third item does not get a ‘3.’).

8.17 math

Synopsis:

\begin{math}
math
\end{math}

The *math* environment inserts the given *math* within the running text. \(\(...\)\) and \$...\$ are synonyms. See Chapter 16 [*Math formulas*], page 73.

8.18 minipage

\begin{minipage}[position][height][inner-pos]{width}
text
\end{minipage}

The *minipage* environment typesets its body *text* in a block that will not be broken across pages. This is similar to the *parbox* command (see Section 20.5 [*parbox*], page 97), but unlike *parbox*, other paragraph-making environments can be used inside a minipage.

The arguments are the same as for *parbox* (see Section 20.5 [*parbox*], page 97).

By default, paragraphs are not indented in the *minipage* environment. You can restore indentation with a command such as *setlength*(*parindent*){1pc} command.

Footnotes in a *minipage* environment are handled in a way that is particularly useful for putting footnotes in figures or tables. A *\footnote* or *\footnotetext* command puts the footnote at the bottom of the minipage instead of at the bottom of the page, and it uses the *\mpfootnote* counter instead of the ordinary *footnote* counter (see Chapter 13 [*Counters*], page 66).

However, don’t put one minipage inside another if you are using footnotes; they may wind up at the bottom of the wrong minipage.
8.19 picture

\begin{picture}(width,height)(xoffset,yoffset)
... picture commands ...
\end{picture}

The picture environment allows you to create just about any kind of picture you want containing text, lines, arrows and circles. You tell \LaTeX{} where to put things in the picture by specifying their coordinates. A coordinate is a number that may have a decimal point and a minus sign—a number like 5, 0.3 or -3.1416. A coordinate specifies a length in multiples of the unit length \texttt{\unitlength}, so if \texttt{\unitlength} has been set to 1cm, then the coordinate 2.54 specifies a length of 2.54 centimeters.

You should only change the value of \texttt{\unitlength}, using the \texttt{\setlength} command, outside of a picture environment. The default value is 1pt.

A position is a pair of coordinates, such as (2.4,-5), specifying the point with x-coordinate 2.4 and y-coordinate -5. Coordinates are specified in the usual way with respect to an origin, which is normally at the lower-left corner of the picture. Note that when a position appears as an argument, it is not enclosed in braces; the parentheses serve to delimit the argument.

The picture environment has one mandatory argument which is a position (width, height), which specifies the size of the picture. The environment produces a rectangular box with these width and height.

The picture environment also has an optional position argument (xoffset,yoffset), following the size argument, that can change the origin. (Unlike ordinary optional arguments, this argument is not contained in square brackets.) The optional argument gives the coordinates of the point at the lower-left corner of the picture (thereby determining the origin). For example, if \texttt{\unitlength} has been set to 1mm, the command

\begin{picture}(100,200)(10,20)
produces a picture of width 100 millimeters and height 200 millimeters, whose lower-left corner is the point (10,20) and whose upper-right corner is therefore the point (110,220). When you first draw a picture, you typically omit the optional argument, leaving the origin at the lower-left corner. If you then want to modify your picture by shifting everything, you can just add the appropriate optional argument.

The environment’s mandatory argument determines the nominal size of the picture. This need bear no relation to how large the picture really is; \LaTeX{} will happily allow you to put things outside the picture, or even off the page. The picture’s nominal size is used by \LaTeX{} in determining how much room to leave for it.

Everything that appears in a picture is drawn by the \texttt{\put} command. The command

\put (11.3,-.3){...}

puts the object specified by \ldots{} in the picture, with its reference point at coordinates (11.3, -0.3). The reference points for various objects will be described below.

The \texttt{\put} command creates an LR box. You can put anything that can go in an \texttt{\mbox} (see Section 20.1 \texttt{\mbox}, page 96) in the text argument of the \texttt{\put} command. When you do this, the reference point will be the lower left corner of the box.

The picture commands are described in the following sections.
8.19.1 \circle

Synopsis:
\[\text{circle}[*]\{\text{diameter}\}\]

The \circle command produces a circle with a diameter as close to the specified one as possible. The *-form of the command draws a solid circle.

Circles up to 40 pt can be drawn.

8.19.2 \makebox

Synopsis:
\[\text{makebox}(\text{width}, \text{height})[\text{position}]\{\text{text}\}\]

The \makebox command for the picture environment is similar to the normal \makebox command except that you must specify a width and height in multiples of \unitlength.

The optional argument, [position], specifies the quadrant that your text appears in. You may select up to two of the following:
- t Moves the item to the top of the rectangle.
- b Moves the item to the bottom.
- l Moves the item to the left.
- r Moves the item to the right.

See Section 20.4 [\makebox], page 96.

8.19.3 \framebox

Synopsis:
\[\text{framebox}(\text{width}, \text{height})[\text{pos}]\{\ldots\}\]

The \framebox command is like \makebox (see previous section), except that it puts a frame around the outside of the box that it creates.

The \framebox command produces a rule of thickness \fboxrule, and leaves a space \fboxsep between the rule and the contents of the box.

8.19.4 \dashbox

Draws a box with a dashed line. Synopsis:
\[\text{dashbox}\{\text{dlen}),(\text{rwidth}, \text{rheight})[\text{pos}]\{\text{text}\}\]

\dashbox creates a dashed rectangle around text in a picture environment. Dashes are dlen units long, and the rectangle has overall width rwidth and height rheight. The text is positioned at optional pos.

A dashed box looks best when the rwidth and rheight are multiples of the dlen.

8.19.5 \frame

Synopsis:
\[\text{frame}\{\text{text}\}\]

The \frame command puts a rectangular frame around text. The reference point is the bottom left corner of the frame. No extra space is put between the frame and the object.
8.19.6 \line

Synopsis:
\line(xslope,yslope){length}

The \line command draws a line with the given length and slope xslope/yslope.

Standard \LaTeX can only draw lines with slope x/y, where x and y have integer values from -6 through 6. For lines of any slope, and plenty of other shapes, see pict2e and many other packages on CTAN.

8.19.7 \linethickness

The \linethickness{dim} command declares the thickness of horizontal and vertical lines in a picture environment to be dim, which must be a positive length.

\linethickness does not affect the thickness of slanted lines, circles, or the quarter circles drawn by \oval.

8.19.8 \thicklines

The \thicklines command is an alternate line thickness for horizontal and vertical lines in a picture environment; cf. Section 8.19.7 [\linethickness], page 39 and Section 8.19.9 [\thinlines], page 39.

8.19.9 \thinlines

The \thinlines command is the default line thickness for horizontal and vertical lines in a picture environment; cf. Section 8.19.7 [\linethickness], page 39 and Section 8.19.8 [\thicklines], page 39.

8.19.10 \multiput

Synopsis:
\multiput(x,y)(delta_x,delta_y){n}{obj}

The \multiput command copies the object obj in a regular pattern across a picture. obj is first placed at position (x,y), then at $(x+\delta x,y+\delta y)$, and so on, n times.

8.19.11 \oval

Synopsis:
\oval(width,height)[portion]

The \oval command produces a rectangle with rounded corners. The optional argument portion allows you to produce only half of the oval via the following:

- \text{t} selects the top half;
- \text{b} selects the bottom half;
- \text{r} selects the right half;
- \text{l} selects the left half.

It is also possible to produce only one quarter of the oval by setting portion to tr, br, bl, or tl.

The “corners” of the oval are made with quarter circles with a maximum radius of 20 pt, so large “ovals” will look more like boxes with rounded corners.
8.19.12 \put
Synopsis:
\put(xcoord,ycoord){ ... }

The \put command places the material specified by the (mandatory) argument in braces at the given coordinate, (xcoord,ycoord).

8.19.13 \shortstack
Synopsis:
\shortstack[position]{...\...\...}

The \shortstack command produces a stack of objects. The valid positions are:

r Move the objects to the right of the stack.
l Move the objects to the left of the stack

c Move the objects to the centre of the stack (default)

Objects are separated with \.

8.19.14 \vector
Synopsis:
\vector(xslope,yslope){length}

The \vector command draws a line with an arrow of the specified length and slope. The xslope and yslope values must lie between -4 and $+4$, inclusive.

8.20 quotation and quote
Synopsis:
\begin{quotation}
text
\end{quotation}
or
\begin{quote}
text
\end{quote}

Include a quotation.

In both environments, margins are indented on both sides by \leftmargin and the text is justified at both. As with the main text, leaving a blank line produces a new paragraph.

To compare the two: in the quotation environment, paragraphs are indented by 1.5 em and the space between paragraphs is small, 0pt plus 1pt. In the quote environment, paragraphs are not indented and there is vertical space between paragraphs (it is the rubber length \parsep). Thus, the quotation environment may be more suitable for documents where new paragraphs are marked by an indent rather than by a vertical separation. In addition, quote may be more suitable for a short quotation or a sequence of short quotations.
\begin{quotation}
\it Four score and seven years ago
.. shall not perish from the earth.
\hspace{1em plus 1fill}---Abraham Lincoln
\end{quotation}

8.21 tabbing

Synopsis:
\begin{tabbing}
row1col1 \= row1col2 \= row1col3 \= row1col4 \\
row2col1 \> \> row2col3 \\ ...
\end{tabbing}

The tabbing environment provides a way to align text in columns. It works by setting tab stops and tabbing to them much as was done on an ordinary typewriter. It is best suited for cases where the width of each column is constant and known in advance.

This environment can be broken across pages, unlike the tabular environment.

The following commands can be used inside a tabbing environment:

\begin{itemize}
\item \texttt{\textbackslash (tabbing)}
 \hspace{1em} End a line.
\item \texttt{\textbackslash = (tabbing)}
 \hspace{1em} Sets a tab stop at the current position.
\item \texttt{\textbackslash > (tabbing)}
 \hspace{1em} Advances to the next tab stop.
\item \texttt{\textbackslash <}
 \hspace{1em} Put following text to the left of the local margin (without changing the margin).
 \hspace{1em} Can only be used at the start of the line.
\item \texttt{\textbackslash +}
 \hspace{1em} Moves the left margin of the next and all the following commands one tab stop to the right, beginning tabbed line if necessary.
\item \texttt{\textbackslash -}
 \hspace{1em} Moves the left margin of the next and all the following commands one tab stop to the left, beginning tabbed line if necessary.
\item \texttt{\textbackslash ' (tabbing)}
 \hspace{1em} Moves everything that you have typed so far in the current column, i.e., everything from the most recent \texttt{\textbackslash >}, \texttt{\textbackslash <}, \texttt{\textbackslash '}, \texttt{\textbackslash \textbackslash}, \texttt{\textbackslash kill} command, to the right of the previous column, flush against the current column’s tab stop.
\item \texttt{\textbackslash ' (tabbing)}
 \hspace{1em} Allows you to put text flush right against any tab stop, including tab stop 0.
 \hspace{1em} However, it can’t move text to the right of the last column because there’s no tab stop there. The \texttt{\textbackslash '} command moves all the text that follows it, up to the \texttt{\textbackslash \textbackslash} or \texttt{\textbackslash end(tabbing)} command that ends the line, to the right margin of the tabbing environment. There must be no \texttt{\textbackslash >} or \texttt{\textbackslash '} command between the \texttt{\textbackslash '} and the command that ends the line.
\end{itemize}
In a tabbing environment, the commands \=, \' and \' do not produce accents as usual (see Section 21.3 [Accents], page 102). Instead, the commands \a=, \a' and \a' are used.

\kill
Sets tab stops without producing text. Works just like \ except that it throws away the current line instead of producing output for it. The effect of any \=, \+ or \- commands in that line remain in effect.

\poptabs
Restores the tab stop positions saved by the last \pushtabs.

\pushtabs
Saves all current tab stop positions. Useful for temporarily changing tab stop positions in the middle of a tabbing environment.

\tabbingsep
Distance to left of tab stop moved by \'.

This example typesets a Pascal function in a traditional format:

\begin{tabbing}
function \= fact(n \ : integer) : integer;\\
 \> begin \= \+ \\
 \> if \= n \>$>$ 1 then \+ \\
 \> fact := n * fact(n-1) \- \\
 \> else \+ \\
 \> fact := 1; \-\- \\
 \> end;\\
\end{tabbing}

8.22 table

Synopsis:

\begin{table}[placement]
\begin{tabbing}
\caption[lottitle]{title}
\label{label}
\end{tabbing}

A class of floats (see Section 5.6 [Floats], page 19). Because they cannot be split across pages, they are not typeset in sequence with the normal text but instead are “floated” to a convenient place, such as the top of a following page.

For the possible values of placement and their effect on the float placement algorithm, see Section 5.6 [Floats], page 19.

The table body is typeset in a parbox of width \textwidth and so it can contain text, commands, etc.

The label is optional; it is used for cross-references (see Chapter 7 [Cross references], page 23). The optional \caption command specifies caption text for the table. By default it is numbered. If lottitle is present, it is used in the list of tables instead of title (see Section 23.1 [Tables of contents], page 106).
In this example the table and caption will float to the bottom of a page, unless it is pushed to a float page at the end.

\begin{table}
\centering
\begin{tabular}{r|p{2in}}
\hline
One & The loneliest number \\
Two & Can be as sad as one.
\hline
It's the loneliest number since the number one.
\end{tabular}
\caption{Cardinal virtues}
\label{tab:CardinalVirtues}
\end{table}

8.23 tabular

Synopsis:

\begin{tabular}{pos{cols}}
\hline
\textit{column 1 entry} & \textit{column 2 entry} & ... & \textit{column n entry} \\
\hline
\end{tabular}

or

\begin{tabular*}{width}{pos{cols}}
\hline
\textit{column 1 entry} & \textit{column 2 entry} & ... & \textit{column n entry} \\
\hline
\end{tabular*}

These environments produce a table, a box consisting of a sequence of horizontal rows. Each row consists of items that are aligned vertically in columns. This illustrates many of the features.

\begin{tabular}{l|l}
\textit{Player name} & \textit{Career home runs} \\
\hline
Hank Aaron & 755 \\
Babe Ruth & 714
\end{tabular}

The vertical format of two left-aligned columns, with a vertical bar between them, is specified in \texttt{tabular}'s argument \{l|l\}. Columns are separated with an ampersand \&. A horizontal rule between two rows is created with \texttt{\hline}. The end of each row is marked with a double backslash \\. This \\ is optional after the last row unless an \texttt{\hline} command follows, to put a rule below the table.

The required and optional arguments to \texttt{tabular} consist of:

\begin{itemize}
\item \texttt{width} Required for \texttt{tabular*}, not allowed for \texttt{tabular}. Specifies the width of the \texttt{tabular*} environment. The space between columns should be rubber, as with @{\extracolsep{\fill}}, to allow the table to stretch or shrink to make the specified width, or else you are likely to get the \texttt{Underfull \hbox} (badness 10000) in alignment warning.
\end{itemize}
pos Optional. Specifies the table's vertical position. The default is to align the
table so its vertical center matches the baseline of the surrounding text. There
are two other possible alignments: t aligns the table so its top row matches the
baseline of the surrounding text, and b aligns on the bottom row.
This only has an effect if there is other text. In the common case of a \texttt{tabular}
alone in a \texttt{center} environment this option makes no difference.

cols Required. Specifies the formatting of columns. It consists of a sequence of
the following specifiers, corresponding to the types of column and intercolumn
material.

\begin{itemize}
 \item \texttt{l} A column of left-aligned items.
 \item \texttt{r} A column of right-aligned items.
 \item \texttt{c} A column of centered items.
 \item | A vertical line the full height and depth of the environment.
\end{itemize}

@\{text or space\}
This inserts \textit{text} or \textit{space} at this location in every row. The \textit{text}
or \textit{space} material is typeset in LR mode. This text is fragile (see
Section 12.9 [\texttt{protect}], page 65).

This specifier is optional: unless you put in your own @-expression
then \LaTeX{}'s \texttt{book}, \texttt{article}, and \texttt{report} classes will put on either side
of each column a space of length \texttt{\tabcolsep}, which by default is
\texttt{6pt}. That is, by default adjacent columns are separated by 12pt
(so \texttt{\tabcolsep} is misleadingly-named since it is not the separation
between tabular columns). Also by default a space of 6pt comes
before the first column as well as after the final column, unless you
put a @\{..\} or | there.

If you override the default and use an @-expression then you must
insert any desired space yourself, as in @\{\texttt{h\hspace{1em}}\}.

An empty expression @\{\} will eliminate the space, including the space
at the start or end, as in the example below where the tabular
lines need to lie on the left margin.

\begin{verbatim}
 \begin{flushleft}
 \begin{tabular}{@{}l}
 \end{tabular}
 \end{flushleft}
\end{verbatim}

This example shows text, a decimal point, between the columns,
arranged so the numbers in the table are aligned on that decimal
point.

\begin{verbatim}
 \begin{tabular}{r@{$.$}l}
 3 & 14
 9 & 80665
 \end{tabular}
\end{verbatim}
An \texttt{extracolsep\{wd\}} command in an @-expression causes an extra space of width \texttt{wd} to appear to the left of all subsequent columns, until countermanded by another \texttt{extracolsep} command. Unlike ordinary intercolumn space, this extra space is not suppressed by an @-expression. An \texttt{extracolsep} command can be used only in an @-expression in the \texttt{cols} argument. Below, \LaTeX{} inserts the right amount of intercolumn space to make the entire table 4 inches wide.

\begin{center}
\begin{tabular*}{4in}{l@{\extracolsep{\fill}}l}
Seven times down, eight times up \\
&such is life!
\end{tabular*}
\end{center}

To insert commands that are automatically executed before a given column, load the \texttt{array} package and use the >{\ldots} specifier.

\begin{verbatim}
\begin{center}
\begin{tabular*}{4in}{l@{\ldots\extracolsep{\fill}}}l\end{tabular*}
\end{center}
\end{verbatim}

\texttt{p\{wd\}} Each item in the column is typeset in a parbox of width \texttt{wd}.

Note that a line break double backslash $\\backslash$ may not appear in the item, except inside an environment like \texttt{minipage}, \texttt{array}, or \texttt{tabular}, or inside an explicit \texttt{parbox}, or in the scope of a \texttt{centering}, \texttt{raggedright}, or \texttt{raggedleft} declaration (when used in a \texttt{p}-column element these declarations must appear inside braces, as with \texttt{\{centering \ldots \\backslash \ldots\}}). Otherwise \LaTeX{} will misinterpret the double backslash as ending the row.

\begin{verbatim}
\begin{center}
\begin{tabular*}{4in}{l@{\ldots}}l\end{tabular*}
\end{center}
\end{verbatim}

\texttt{*\{num\}\{cols\}} Equivalent to \texttt{num} copies of \texttt{cols}, where \texttt{num} is a positive integer and \texttt{cols} is a list of specifiers. Thus \begin{verbatim}
\begin{tabular}{|l|l|}
\hline
1 & 1 \\
\end{tabular}
\end{verbatim} is equivalent to \begin{verbatim}
\begin{tabular}{|l|l|l|l|}
\hline
1 & 1 & 1 & 1 \\
\end{tabular}
\end{verbatim}. Note that \texttt{cols} may contain another \texttt{*}-expression.

Parameters that control formatting:

\texttt{\arrayrulewidth} A length that is the thickness of the rule created by \texttt{|}, \texttt{\hline}, and \texttt{\vline} in the \texttt{tabular} and \texttt{array} environments. The default is \texttt{.4pt}. Change it as in \begin{verbatim}
\setlength{\arrayrulewidth}{0.8pt}.
\end{verbatim}

\texttt{\arraystretch} A factor by which the spacing between rows in the \texttt{tabular} and \texttt{array} environments is multiplied. The default is \texttt{1}, for no scaling. Change it as \begin{verbatim}
\renewcommand{\arraystretch}{1.2}.
\end{verbatim}

\texttt{\doublerulesep} A length that is the distance between the vertical rules produced by the \texttt{||} specifier. The default is \texttt{2pt}.

\textbf{\texttt{\tabcolsep}}

A length that is half of the space between columns. The default is ‘6pt’. Change it with \texttt{\setlength}.

The following commands can be used inside the body of a \texttt{tabular} environment, the first two inside an entry and the second two between lines:

\textbf{8.23.1 \texttt{\multicolumn}}

Synopsis:

\texttt{\multicolumn{numcols}{cols}{text}}

Make an \texttt{array} or \texttt{tabular} entry that spans several columns. The first argument \texttt{numcols} gives the number of columns to span. The second argument \texttt{cols} specifies the formatting of the entry, with \texttt{c} for centered, \texttt{l} for flush left, or \texttt{r} for flush right. The third argument \texttt{text} gives the contents of that entry.

In this example, in the first row, the second and third columns are spanned by the single heading ‘Name’.

\begin{tabular}{lccl}
\textit{ID} &\multicolumn{2}{c}{\textit{Name}} &\textit{Age} \\
\hline % row one
978-0-393-03701-2 &O’Brian &Patrick &55 \\
.. \\
\end{tabular}

What counts as a column is: the column format specifier for the \texttt{array} or \texttt{tabular} environment is broken into parts, where each part (except the first) begins with \texttt{l}, \texttt{c}, \texttt{r}, or \texttt{p}. So from \texttt{\begin{tabular}{|r|ccp{1.5in}|}} the parts are \texttt{|r|}, \texttt{c}, \texttt{c}, and \texttt{p{1.5in}}.

The \texttt{cols} argument overrides the \texttt{array} or \texttt{tabular} environment’s intercolumn area default adjoining this multicolumn entry. To affect that area, this argument can contain vertical bars | indicating the placement of vertical rules, and @{..} expressions. Thus if \texttt{cols} is ‘|c|’ then this multicolumn entry will be centered and a vertical rule will come in the intercolumn area before it and after it. This table details the exact behavior.

\begin{tabular}{|cc|c|c|}
\multicolumn{1}{r}{w} % entry one \\
&\multicolumn{1}{|r|}{x} % entry two \\
&\multicolumn{1}{|r|}{y} % entry three \\
&z % entry four \\
\end{tabular}

Before the first entry the output will not have a vertical rule because the \texttt{\multicolumn} has the \texttt{cols} specifier ‘r’ with no initial vertical bar. Between entry one and entry two there will be a vertical rule; although the first \texttt{cols} does not have an ending vertical bar, the second \texttt{cols} does have a starting one. Between entry two and entry three there is a single vertical rule; despite that the \texttt{cols} in both of the surrounding \texttt{multicolumn}’s call for a vertical rule, you only get one rule. Between entry three and entry four there is no vertical rule; the default calls for one but the \texttt{cols} in the entry three \texttt{\multicolumn} leaves it out, and that takes precedence. Finally, following entry four there is a vertical rule because of the default.
The number of spanned columns \textit{numcols} can be 1. Besides giving the ability to change the horizontal alignment, this also is useful to override for one row the \texttt{tabular} definition's default intercolumn area specification, including the placement of vertical rules.

In the example below, in the \texttt{tabular} definition the first column is specified to default to left justified but in the first row the entry is centered with \texttt{\multicolumn{1}{c}{\texttt{\textsc{Period}}}}. Also in the first row, the second and third columns are spanned by a single entry with \texttt{\multicolumn{2}{c}{\texttt{\textsc{Span}}}}, overriding the specification to center those two columns on the page range end-dash.

\begin{tabular}{l|r@{--}l}
\multicolumn{1}{c}{\texttt{\textsc{Period}}} &\multicolumn{2}{c}{\texttt{\textsc{Span}}} \\
\hline
Baroque &1600 &1760 \\
Classical &1730 &1820 \\
Romantic &1780 &1910 \\
Impressionistic &1875 &1925
\end{tabular}

Note that although the \texttt{tabular} specification by default puts a vertical rule between the first and second columns, because there is no vertical bar in the \texttt{cols} of either of the first row's \texttt{\multicolumn} commands, no rule appears in the first row.

\texttt{8.23.2 \vline}

Draw a vertical line in a \texttt{tabular} or \texttt{array} environment extending the full height and depth of an entry's row. Can also be used in an \texttt{@}-expression, although its synonym vertical bar \texttt{|} is more common. This command is rarely used; typically a table's vertical lines are specified in \texttt{tabular}'s \texttt{cols} argument and overriden as needed with \texttt{\multicolumn}.

This example illustrates some pitfalls. In the first line's second entry the \texttt{\hfill} moves the \texttt{\vline} to the left edge of the cell. But that is different than putting it halfway between the two columns, so in that row between the first and second columns there are two vertical rules, with the one from the \{c|cc\} specifier coming before the one produced by the \texttt{\vline\hfill}. In contrast, the first line's third entry shows the usual way to put a vertical bar between two columns. In the second line, the \texttt{ghi} is the widest entry in its column so in the \texttt{\vline\hfill} the \texttt{\hfill} has no effect and the vertical line in that entry appears immediately next to the \texttt{g}, with no whitespace.

\begin{tabular}{c|cc}
x &\vline\hfill y &\multicolumn{1}{|r}{z} \\
abc &\def &\vline\hfill ghi
\end{tabular}

\texttt{8.23.3 \cline}

Synopsis:

\begin{verbatim}
\cline{i-j}
\end{verbatim}

Draw a horizontal rule in an \texttt{array} or \texttt{tabular} environment beginning in column \textit{i} and ending in column \textit{j}. The dash \texttt{-} must appear in the mandatory argument. To span a single column use the number twice.
This example puts two horizontal lines between the first and second rows, one line in
the first column only, and the other spanning the third and fourth columns. The two lines
are side-by-side, at the same height.

\begin{tabular}{llrr}
a & b & c & d \\ \cline{1-1} \cline{3-4}
e & f & g & h
\end{tabular}

8.23.4 \texttt{\textbackslash hline}

Draws a horizontal line the width of the enclosing \texttt{tabular} or \texttt{array} environment. It’s most
commonly used to draw a line at the top, bottom, and between the rows of a table.

In this example the top of the table has two horizontal rules, one above the other,
that span both columns. The bottom of the table has a single rule spanning both columns.
Because of the \texttt{\textbackslash hline}, the \texttt{tabular} second row’s line ending double backslash \textbackslash is required.

\begin{tabular}{ll} \hline
table & description \\ \hline
Baseball & Red Sox \\ Basketball & Celtics
\end{tabular}

8.24 \texttt{\textbackslash thebibliography}

Synopsis:

\begin{verbatim}
\begin{thebibliography}{widest-label}
 \bibitem[label]{cite_key}
 ...
\end{thebibliography}
\end{verbatim}

The \texttt{\textbackslash thebibliography} environment produces a bibliography or reference list.

In the \texttt{article} class, this reference list is labelled “References”; in the \texttt{report} class, it
is labelled “Bibliography”. You can change the label (in the standard classes) by redefining
the command \texttt{\textbackslash refname}. For instance, this eliminates it entirely:

\begin{verbatim}
\renewcommand{\refname}{}
\end{verbatim}

The mandatory \texttt{widest-label} argument is text that, when typeset, is as wide as the widest
item label produced by the \texttt{\textbackslash bibitem} commands. It is typically given as 9 for bibliographies
with less than 10 references, 99 for ones with less than 100, etc.

8.24.1 \texttt{\textbackslash bibitem}

Synopsis:

\begin{verbatim}
\bibitem[label]{cite_key}
\end{verbatim}

The \texttt{\textbackslash bibitem} command generates an entry labelled by \texttt{label}. If the \texttt{label} argument is
missing, a number is automatically generated using the \texttt{enumi} counter. The \texttt{cite_key} is any
sequence of letters, numbers, and punctuation symbols not containing a comma.

This command writes an entry to the \texttt{.aux} file containing the item’s \texttt{cite_key} and
label. When the \texttt{.aux} file is read by the \texttt{\begin{document}} command, the item’s \texttt{label} is
associated with \texttt{cite_key}, causing references to \texttt{cite_key} with a \texttt{\cite} command (see next
section) to produce the associated label.
8.24.2 \cite

Synopsis:
\cite[subcite]{keys}

The keys argument is a list of one or more citation keys, separated by commas. This command generates an in-text citation to the references associated with keys by entries in the .aux file.

The text of the optional subcite argument appears after the citation. For example, \cite[p.~314]{knuth} might produce ‘[Knuth, p. 314]’.

8.24.3 \nocite

\nocite{keys}

The \nocite command produces no text, but writes keys, which is a list of one or more citation keys, to the .aux file.

8.24.4 Using Bib\TeX

If you use the Bib\TeX program by Oren Patashnik (highly recommended if you need a bibliography of more than a couple of titles) to maintain your bibliography, you don’t use the thebibliography environment (see Section 8.24 [thebibliography], page 48). Instead, you include the lines
\bibliographystyle{bibstyle}
\bibliography{bibfile1,bibfile2}

The \bibliographystyle command does not produce any output of its own. Rather, it defines the style in which the bibliography will be produced: bibstyle refers to a file bibstyle.bst, which defines how your citations will look. The standard style names distributed with Bib\TeX are:

alpha Sorted alphabetically. Labels are formed from name of author and year of publication.
plain Sorted alphabetically. Labels are numeric.
unsr Sort like plain, but entries are in order of citation.
abbr Like plain, but more compact labels.

In addition, numerous other Bib\TeX style files exist tailored to the demands of various publications. See http://mirror.ctan.org/biblio/bibtex/contrib.

The \bibliography command is what actually produces the bibliography. The argument to \bibliography refers to files named bibfile.bib, which should contain your database in Bib\TeX format. Only the entries referred to via \cite and \nocite will be listed in the bibliography.

8.25 theorem

Synopsis:
\begin{theorem}
theorem-text
\end{theorem}
The **theorem** environment produces “Theorem n” in boldface followed by *theorem-text*, where the numbering possibilities for *n* are described under `\newtheorem` (see Section 12.7 `\newtheorem`, page 62).

8.26 titlepage

Synopsis:
```latex
\begin{titlepage}
  text
\end{titlepage}
```

The `titlepage` environment creates a title page, i.e., a page with no printed page number or heading. It also causes the following page to be numbered page one. Formatting the title page is left to you. The `\today` command may be useful on title pages (see Section 21.6 `\today`, page 104).

You can use the `\maketitle` command (see Section 18.1 `\maketitle`, page 89) to produce a standard title page without a `titlepage` environment.

8.27 verbatim

Synopsis:
```latex
\begin{verbatim}
  literal-text
\end{verbatim}
```

The `verbatim` environment is a paragraph-making environment in which `\LaTeX` produces exactly what you type in; for instance the `\` character produces a printed ‘`\’’. It turns `\LaTeX` into a typewriter with carriage returns and blanks having the same effect that they would on a typewriter.

The `verbatim` uses a monospaced typewriter-like font (`\tt`).

8.27.1 `\verb`

Synopsis:
```latex
\verbcharliteral-textchar
\verb*charliteral-textchar
```

The `\verb` command typesets `literal-text` as it is input, including special characters and spaces, using the typewriter (`\tt`) font. No spaces are allowed between `\verb` or `\verb*` and the delimiter `char`, which begins and ends the verbatim text. The delimiter must not appear in `literal-text`.

The `*`-form differs only in that spaces are printed with a “visible space” character. (Namely, `␣`.)

8.28 verse

Synopsis:
```latex
\begin{verse}
  line1  \`
  line2  \`
```
The \texttt{verse} environment is designed for poetry, though you may find other uses for it.

The margins are indented on the left and the right, paragraphs are not indented, and the text is not justified. Separate the lines of each stanza with $\backslash\backslash$, and use one or more blank lines to separate the stanzas.
9 Line breaking

The first thing \LaTeX{} does when processing ordinary text is to translate your input file into a sequence of glyphs and spaces. To produce a printed document, this sequence must be broken into lines (and these lines must be broken into pages).

\LaTeX{} usually does the line (and page) breaking in the text body for you but in some environments you manually force line breaks.

9.1 \texttt{\\}

Synopsis:
\[
\texttt{\\}[\textit{morespace}]
\]

or
\[
\texttt{\textbackslash*[morespace]}
\]

Start a new line. The optional argument \textit{morespace} specifies extra vertical space to be insert before the next line. This can be a negative length. The text before the break is set at its normal length, that is, it is not stretched to fill out the line width.

Explicit line breaks in the text body are unusual in \LaTeX{}. In particular, to start a new paragraph instead leave a blank line. This command is mostly used outside of the main flow of text such as in a \texttt{tabular} or \texttt{array} environment.

Under ordinary circumstances (e.g., outside of a \texttt{p{.}} column in a \texttt{tabular} environment) the \texttt{\newline} command is a synonym for \texttt{\\} (see Section 9.3 \texttt{\newline}, page 52).

In addition to starting a new line, the starred form \texttt{\textbackslash*[nobreak]} tells \LaTeX{} not to start a new page between the two lines, by issuing a \texttt{\nobreak}.
\[
\texttt{\\[0.25in]}
\begin{tabular}{p{1in}\hspace{2in}p{1in}}
Name: & Date: \\
\hline
\end{tabular}
\]

This will print ‘Name:’ and ‘Address:’ as two lines in a single cell of the table.

9.2 \texttt{\obeycr} \& \texttt{\restorecr}

The \texttt{\obeycr} command makes a return in the input file (‘\textasciicircum\textasciicircum\textasciicircum\textasciicircum’, internally) the same as \texttt{\\} (followed by \texttt{\relax}). So each new line in the input will also be a new line in the output.

\texttt{\restorecr} restores normal line-breaking behavior.

9.3 \texttt{\newline}

In ordinary text this is equivalent to double-backslash (see Section 9.1 \texttt{\\}, page 52); it breaks a line, with no stretching of the text before it.

Inside a \texttt{tabular} or \texttt{array} environment, in a column with a specifier producing a paragraph box, like typically \texttt{p{.}}, \texttt{\newline} will insert a line break inside of the column, that is, it does not break the entire row. To break the entire row use \texttt{\\} or its equivalent \texttt{\tabularnewline}.

This will print ‘Name:’ and ‘Address:’ as two lines in a single cell of the table.

\[
\begin{tabular}{p{1in}\hspace{2in}p{1in}}
Name: \newline Address: & Date: \texttt{\\hline} \\
\end{tabular}
\]

The ‘Date:’ will be baseline-aligned with ‘Name:’.
9.4 \- (discretionary hyphen)
The \- command tells \TeX{} that it may hyphenate the word at that point. \TeX{} is pretty good at hyphenating, and usually finds most of the correct hyphenation points, while almost never using an incorrect one. The \- command is used for the exceptional cases.

When you insert \- commands in a word, the word will only be hyphenated at those points and not at any of the hyphenation points that \TeX{} might otherwise have chosen.

9.5 \fussy

The declaration \fussy (which is the default) makes \TeX{} picky about line breaking. This usually avoids too much space between words, at the cost of an occasional overfull box.

This command cancels the effect of a previous \sloppy command (see Section 9.6 \[\sloppy\], page 53).

9.6 \sloppy

The declaration \sloppy makes \TeX{} less fussy about line breaking. This will avoid overfull boxes, at the cost of loose interword spacing.

Lasts until a \fussy command is issued (see Section 9.5 \[\fussy\], page 53).

9.7 \hyphenation

Synopsis:

\hyphenation{word-one word-two}

The \hyphenation command declares allowed hyphenation points with a \- character in the given words. The words are separated by spaces. \TeX{} will only hyphenate if the word matches exactly, no inflections are tried. Multiple \hyphenation commands accumulate. Some examples (the default \TeX{} hyphenation patterns misses the hyphenations in these words):

\hyphenation{ap-pen-dix col-umns data-base data-bases}

9.8 \linebreak & \nolinebreak

Synopses:

\linebreak[priority]
\nolinebreak[priority]

By default, the \linebreak (\nolinebreak) command forces (prevents) a line break at the current position. For \linebreak, the spaces in the line are stretched out so that it extends to the right margin as usual.

With the optional argument priority, you can convert the command from a demand to a request. The priority must be a number from 0 to 4. The higher the number, the more insistent the request.
10 Page breaking

\LaTeX{} starts new pages asynchronously, when enough material has accumulated to fill up a page. Usually this happens automatically, but sometimes you may want to influence the breaks.

10.1 \texttt{\cleardoublepage}

The \texttt{\cleardoublepage} command ends the current page and causes all the pending floating figures and tables that have so far appeared in the input to be printed. In a two-sided printing style, it also makes the next page a right-hand (odd-numbered) page, producing a blank page if necessary.

10.2 \texttt{\clearpage}

The \texttt{\clearpage} command ends the current page and causes all the pending floating figures and tables that have so far appeared in the input to be printed.

10.3 \texttt{\newpage}

The \texttt{\newpage} command ends the current page, but does not clear floats (see Section 10.2 [\texttt{\clearpage}], page 54).

10.4 \texttt{\enlargethispage}

\begin{verbatim}
\enlargethispage{size}
\enlargethispage*[size]
\end{verbatim}

Enlarge the \texttt{textheight} for the current page by the specified amount; e.g., \texttt{\enlargethispage[\baselineskip]} will allow one additional line.

The starred form tries to squeeze the material together on the page as much as possible. This is normally used together with an explicit \texttt{\pagebreak}.

10.5 \texttt{\pagebreak} & \texttt{\nopagebreak}

Synopses:

\begin{verbatim}
\pagebreak[priority]
\nopagebreak[priority]
\end{verbatim}

By default, the \texttt{\pagebreak (\nopagebreak)} command forces (prevents) a page break at the current position. With \texttt{\pagebreak}, the vertical space on the page is stretched out where possible so that it extends to the normal bottom margin.

With the optional argument \texttt{priority}, you can convert the \texttt{\pagebreak} command from a demand to a request. The number must be a number from 0 to 4. The higher the number, the more insistent the request is.
11 Footnotes

Place a numbered footnote at the bottom of the current page, as here.

Noël Coward quipped that having to read a footnote is like having to go downstairs to answer the door, while in the midst of making love.\footnote{I wouldn’t know, I don’t read footnotes.}

You can place multiple footnotes on a page. If the text becomes too long it will flow to the next page.

You can also produce footnotes by combining the \footnotemark and the \footnotetext commands, which is useful in special circumstances.

To make bibliographic references come out as footnotes you need to include a bibliographic style with that behavior.

11.1 \footnote

Synopsis:

\footnote[number]{text}

Place a numbered footnote text at the bottom of the current page.

There are over a thousand footnotes in Gibbon’s \textit{Decline and Fall of the Roman Empire}.\footnote{After reading an early version with endnotes David Hume complained, ‘‘One is also plagued with his Notes, according to the present Method of printing the Book’’ and suggested that they ‘‘only to be printed at the Margin or the Bottom of the Page.’’}

The optional argument \texttt{number} allows you to specify the footnote number. If you use this option then the footnote number counter is not incremented, and if you do not use it then the counter is incremented.

Change how \LaTeX\ shows the footnote counter with something like \texttt{\renewcommand{\thefootnote}{\fnsymbol{footnote}}}, which uses a sequence of symbols (see Section 13.1 [alph Alph arabic roman Roman fnsymbol], page 66). To make this change global put that in the preamble. If you make the change local then you may want to reset the counter with \texttt{\setcounter{footnote}{0}}. By default \LaTeX uses arabic numbers.

\LaTeX’s default puts many restrictions on where you can use a \texttt{\footnote}; for instance, you cannot use it in an argument to a sectioning command such as \texttt{\chapter} (it can only be used in outer paragraph mode). There are some workarounds; see following sections.

In a \texttt{minipage} environment the \texttt{\footnote} command uses the \texttt{mpfootnote} counter instead of the \texttt{footnote} counter, so they are numbered independently. They are shown at the bottom of the environment, not at the bottom of the page. And by default they are shown alphabetically. See Section 8.18 [minipage], page 36.
11.2 \footnotemark

Synopsis, one of:
\footnotemark
\footnotemark[number]

Put the current footnote number in the text. (See Section 11.3 [\footnotetext], page 56 for giving the text of the footnote separately.) The version with the optional argument number uses that number to determine the mark printed. This command can be used in inner paragraph mode.

This example gives the same institutional affiliation to both the first and third authors (\thanks is a version of footnote).
\title{A Treatise on the Binomial Theorem}
\author{J Moriarty\thanks{University of Leeds}
and A C Doyle\thanks{Durham University}
and S Holmes\footnotemark[1]}
\begin{document}
\maketitle
If you use \footnotemark without the optional argument then it increments the footnote counter but if you use the optional number then it does not. This produces several consecutive footnote markers referring to the same footnote.

The first theorem\footnote{Due to Gauss.}
and the second theorem\footnotemark[\value{footnote}]
and the third theorem.\footnotemark[\value{footnote}]

11.3 \footnotetext

Synopsis, one of:
\footnotetext{text}
\footnotetext[number]{text}

Place text at the bottom of the page as a footnote. This command can come anywhere after the \footnotemark command. The optional argument number changes the displayed footnote number. The \footnotetext command must appear in outer paragraph mode.

11.4 Footnotes in a table

Inside a table environment the \footnote command does not work. For instance, if the code below appears on its own then the footnote simply disappears; there is a footnote mark in the table cell but nothing is set at the bottom of the page.
\begin{center}
\begin{tabular}{l|l}
\textsc{Ship} &\textsc{Book} \\
\hline
\textit{HMS Sophie} &Master and Commander \\
\textit{HMS Polychrest} &Post Captain \\
\textit{HMS Lively} &Post Captain \\
\textit{HMS Surprise} &A number of books\footnote{Starting with HMS Surprise.} \\
\end{tabular}
\end{center}
The solution is to surround the `tabular` environment with a `minipage` environment, as here (see Section 8.18 [minipage], page 36).

\begin{center}
\begin{minipage}{.5\textwidth}
.. tabular material ..
\end{minipage}
\end{center}

The same technique will work inside a floating `table` environment (see Section 8.22 [table], page 42). To get the footnote at the bottom of the page use the `tablefootnote` package, as illustrated in this example. If you put `\usepackage{tablefootnote}` in the preamble and use the code shown then the footnote appears at the bottom and is numbered in sequence with other footnotes.

\begin{table}
\centering
\begin{tabular}{l|l}
\textsc{Date} &\textsc{Campaign} \\
\hline
1862 &Fort Donelson \\
1863 &Vicksburg \\
1865 &Army of Northern Virginia\footnote{Ending the war.}
\end{tabular}
\caption{Forces captured by US Grant}
\end{table}

11.5 Footnotes in section headings

Putting a footnote in a section heading

\section{Full sets\protect\footnote{This material is due to R\textdaggerdashJones.}}

causes the footnote to appear both at the bottom of the page where the section starts and at the bottom of the table of contents page. To have it not appear on the table of contents use the package `footmisc` with the `stable` option.

\usepackage[stable]{footmisc}

\begin{document}
\section{Full sets\footnote{This material is due to R\textdaggerdashJones.}}

Note that the `\protect` is gone; putting it in causes the footnote to reappear on the table of contents.

11.6 Footnotes of footnotes

Particularly in the humanities, authors can have multiple classes of footnotes, including having footnotes of footnotes. The package `bigfoot` extends \LaTeX\'s default footnote mechanism in many ways, including allow these two, as in this example.

\usepackage{bigfoot}
\DeclareNewFootnote{Default}
\DeclareNewFootnote{from}[alph] % create class \footnotefrom{}
\begin{document}
.. The third theorem is a partial converse of the second.\footnotefrom{First noted in Wilson.\footnote{Second edition only.}}
..

11.7 Multiple references to footnotes
You can refer to a single footnote more than once. This example uses the package cleverref.
\usepackage{cleverref}[2012/02/15] % this version of package or later
\crefformat{footnote}{#2\footnotemark[#1]#3}
\begin{document}
The theorem is from Evers.\footnote{\label{fn:TE}Tinker and Evers, 1994.} The corollary is from Chance.\footnote{Evers and Chance, 1990.} But the key lemma is from Tinker.\cref{fn:TE}
.. This solution will work with the package hyperref. See Section 11.2 [\footnotemark], page 56 for a simpler solution in the common case of multiple authors with the same affiliation.

11.8 Footnote parameters
\footnoterule Produces the rule separating the main text on a page from the page's footnotes. Default dimensions: 0.4pt thick (or wide), and 0.4\textwidth long in the standard document classes (except slides, where it does not appear).
\footnotesep The height of the strut placed at the beginning of the footnote. By default, this is set to the normal strut for \footnotesize fonts (see Section 4.2 [Font sizes], page 11), therefore there is no extra space between footnotes. This is ‘6.65pt’ for ‘10pt’, ‘7.7pt’ for ‘11pt’, and ‘8.4pt’ for ‘12pt’.
12 Definitions

\LaTeX{} has support for making new commands of many different kinds.

12.1 \newcommand & \renewcommand

\newcommand and \renewcommand define and redefine a command, respectively. Synopses:
\begin{verbatim}
\newcommand{cmd}{defn}
\newcommand*{cmd}{defn}
\renewcommand{cmd}{defn}
\renewcommand*{cmd}{defn}
\end{verbatim}

The *-form of these two commands requires that the arguments not contain multiple paragraphs of text (not \long, in plain \TeX{} terms).

- **cmd** Required; the command name. It must begin with \. For \newcommand, it must not be already defined and must not begin with \end. For \renewcommand, it must already be defined.

- **nargs** Optional; an integer from 0 to 9, specifying the number of arguments that the command will take. If this argument is not present, the default is for the command to have no arguments. When redefining a command, the new version can have a different number of arguments than the old version.

- **optargdefault** Optional; if this argument is present then the first argument of defined command \cmd{} is optional, with default value optargdefault (which may be the empty string). If this argument is not present then \cmd{} does not take an optional argument.

 That is, if \cmd{} is used with square brackets following, as in \cmd{[myval]}, then within \texttt{defn #1} expands myval. While if \cmd{} is called without square brackets following, then within \texttt{defn} the \#1 expands to the default optargdefault. In either case, any required arguments will be referred to starting with \#2.

 Omitting \texttt{[myval]} in the call is different from having the square brackets with no contents, as in \[]. The former results in \#1 expanding to optargdefault; the latter results in \#1 expanding to the empty string.

- **defn** The text to be substituted for every occurrence of \cmd{}; a construct of the form \#n in \texttt{defn} is replaced by the text of the nth argument.

 A command with no arguments that is followed in the source by a space will swallow that space. The solution is to type {} after the command and before the space.

 A simple example of defining a new command: \newcommand{\JH}{Jim Hef{}feron} causes the abbreviation \JH to be replaced by the longer text.

 Redefining a command is basically the same: \renewcommand{\qedsymbol}{\small QED}.

 Here’s a command definition that uses arguments:
 \newcommand{\defreference}[1]{Definition\ref{#1}}

 Then, \defreference{def:basis} will expand to something like ‘Definition 3.14’.
An example with two arguments: \newcommand{\nbym}[2]{#1\times#2} is invoked as \nbym{2}{k}.

An example with optional arguments:
\newcommand{\salutation}[1][Sir or Madam]{Dear #1:}

Then, \salutation gives ‘Dear Sir or Madam:’ while \salutation[John] gives ‘Dear John:’. And \salutation[] gives ‘Dear:’.

The braces around defn do not delimit the scope of the result of expanding defn. So \newcommand{\shipname}{[1]{\it #1}} is wrong since in the sentence

The \shipname{Monitor} met the \shipname{Virginia}.

the words ‘met the’ will incorrectly be in italics. An extra pair of braces \newcommand{\shipname}{[1]{\{\it #1\}}} fixes it.

12.2 \providecommand

Defines a command, as long as no command of this name already exists. Synopses:

\providecommand{cmd}[nargs][optargdefault]{defn}
\providecommand*{cmd}[nargs][optargdefault]{defn}

If no command of this name already exists then this has the same effect as \newcommand (see Section 12.1 [newcommand & \renewcommand], page 59). If a command of this name already exists then this definition does nothing. This is particularly useful in a style file, or other file that may be loaded more than once.

12.3 \newcounter: Allocating a counter

Synopsis:

\newcounter{countername}[supercounter]

The \newcounter command globally defines a new counter named countername. The name consists of letters only and does not begin with a backslash (‘\’). The name must not already be used by another counter. The new counter is initialized to zero.

If the optional argument [supercounter] appears, then countername will be numbered within, or subsidiary to, the existing counter supercounter. For example, ordinarily subsection is numbered within section. Any time supercounter is incremented with \stepcounter (see Section 13.7 [stepcounter], page 68) or \refstepcounter (see Section 13.6 [refstepcounter], page 68) then countername is reset to zero.

See Chapter 13 [Counters], page 66, for more information about counters.

12.4 \newlength: Allocating a length

Allocate a new length register. Synopsis:

\newlength{\arg}

This command takes one required argument, which must begin with a backslash (‘\’). It creates a new length register named \arg, which is a place to hold (rubber) lengths such as 1in plus 2in minus 1in (what plain TeX calls a skip register). The register gets an initial value of zero. The control sequence \arg must not already be defined.

See Chapter 14 [Lengths], page 69, for more about lengths.
12.5 \texttt{\newsavebox}: Allocating a box

Allocate a “bin” for holding a box. Synopsis:

\texttt{\newsavebox{\cmd}}

Defines \texttt{\cmd} to refer to a new bin for storing boxes. Such a box is for holding typeset material, to use multiple times (see Chapter 20 [Boxes], page 96) or to measure or manipulate. The name \texttt{\cmd} must start with a backslash (\texttt{	extbackslash}), and must not be already defined.

The allocation of a box is global. This command is fragile (see Section 12.9 [\protect], page 65).

12.6 \texttt{\newenvironment} \& \texttt{\renewenvironment}

These commands define or redefine an environment \texttt{env}, that is, \texttt{\begin{env} ... \end{env}}. Synopses:

\begin{itemize}
\item \texttt{\newenvironment{env}[nargs][optargdefault]{begdefn}{enddefn}}
\item \texttt{\newenvironment*{env}[nargs][optargdefault]{begdefn}{enddefn}}
\item \texttt{\renewenvironment{env}[nargs][optargdefault]{begdefn}{enddefn}}
\item \texttt{\renewenvironment*{env}[nargs][optargdefault]{begdefn}{enddefn}}
\end{itemize}

Unlike \texttt{\newcommand} and \texttt{\renewcommand}, the \texttt{*}-forms \texttt{\newenvironment*} and \texttt{\renewcommand*} have the same effect as the forms with no \texttt{*}.

\begin{itemize}
\item \texttt{env} Required; the environment name. It does not begin with backslash (\texttt{	extbackslash}). It must not begin with the string \texttt{end}. For \texttt{\newenvironment}, the name \texttt{env} must not be the name of an already existing environment, and also the command \texttt{\env} must be undefined. For \texttt{\renewenvironment}, \texttt{env} must be the name of an existing environment.
\item \texttt{nargs} Optional; an integer from 0 to 9 denoting the number of arguments of that the environment will take. These arguments appear after the \texttt{\begin}, as in \texttt{\begin{env}{arg1}...{argn}}. If this argument is not present then the default is for the environment to have no arguments. When redefining an environment, the new version can have a different number of arguments than the old version.
\item \texttt{optargdefault} Optional; if this argument is present then the first argument of the defined environment is optional, with default value \texttt{optargdefault} (which may be the empty string). If this argument is not present then the environment does not take an optional argument.
\end{itemize}

That is, when \texttt{[optargdefault]} is present in the environment definition, if \texttt{\begin{env}} is used with square brackets following, as in \texttt{\begin{env}[myval]}, then within the environment \#1 expands \texttt{myval}. If \texttt{\begin{env}} is called without square brackets following, then within the environment the \#1 expands to the default \texttt{optargdefault}. In either case, any required arguments will be referred to starting with \#2.

Omitting \texttt{[myval]} in the call is different from having the square brackets with no contents, as in \texttt{[]} . The former results in \#1 expanding to \texttt{optargdefault}; the latter results in \#1 expanding to the empty string.
begdefn Required; the text expanded at every occurrence of \begin{env}; a construct of the form \#n in begdef is replaced by the text of the nth argument.

enddefn Required; the text expanded at every occurrence of \end{env}. Note that it may not contain any argument parameters, so \#n cannot be used here.

The environment env delimits the scope of the result of expanding begdefn and enddefn. Thus, in the first example below, the effect of the \small is limited to the quote and does not extend to material following the environment.

This example gives an environment like \LaTeX’s \texttt{quotation} except that it will be set in smaller type.

\begin{verbatim}
\newenvironment{smallquote}{\small\begin{quotation}}{\end{quotation}}
\end{verbatim}

This shows the use of arguments; it gives a quotation environment that cites the author.

\begin{verbatim}
\newenvironment{citequote}[1][Shakespeare]{\begin{quotation}\noindent\textit{#1}:}{\end{quotation}}
\end{verbatim}

The author’s name is optional, and defaults to Shakespeare. In the document, use the environment as here:

\begin{citequote}[Lincoln]
..
\end{citequote}

The final example shows how to save the value of an argument to use in enddefn.

\begin{verbatim}
\newsavebox{\quoteauthor}
\newenvironment{citequote}[1][Shakespeare]{\sbox{\quoteauthor}{#1}\begin{quotation}}{\hspace{1em plus 1fill}---\usebox{\quoteauthor}\end{quotation}}
\end{verbatim}

12.7 \texttt{newtheorem}

Define a new theorem-like environment. Synopses:

\begin{verbatim}
\newtheorem{name}{title}[numbered_within]
\newtheorem{name}{numbered_like}{title}
\end{verbatim}

Both create a theorem-like environment name. Using the first form,
with the optional argument after the second required argument, creates an environment whose counter is subordinate to the existing counter `numbered_within`; it will be reset when `numbered_within` is reset).

Using the second form,

\texttt{\newtheorem\{name\}\{numbered_like\}\{title\}}

with the optional argument between the two required arguments, will create an environment whose counter will share the previously defined counter `numbered_like`.

You can specify one of `numbered_within` and `numbered_like`, or neither, but not both.

This command creates a counter named `name`. In addition, unless the optional argument `numbered_like` is used, the current `\ref` value will be that of `\thenumbered_within` (see Section 7.3 `[\ref]`, page 24).

This declaration is global. It is fragile (see Section 12.9 `[\protect]`, page 65).

Arguments:

\texttt{name} \hspace{1em} The name of the environment. It must not begin with a backslash (`\`). It must not be the name of an existing environment; indeed, the command name `\name` must not already be defined as anything.

\texttt{title} \hspace{1em} The text printed at the beginning of the environment, before the number. For example, `Theorem`.

\texttt{numbered_within} \hspace{1em} Optional; the name of an already defined counter, usually a sectional unit such as \texttt{chapter} or \texttt{section}. When the \texttt{numbered_within} counter is reset then the \texttt{name} environment’s counter will also be reset.

If this optional argument is not used then the command `\thename` is set to `\arabic\{name\}.

\texttt{numbered_like} \hspace{1em} Optional; the name of an already defined theorem-like environment. The new environment will be numbered in sequence with `numbered_like`.

Without any optional arguments the environments are numbered sequentially. This example has a declaration in the preamble that results in `Definition 1` and `Definition 2` in the output.

\texttt{\newtheorem\{defn\}\{Definition\} \begin\{document\} \section{...} \begin\{defn\} First def \end\{defn\} \section{...} \begin\{defn\} Second def \end\{defn\}}
Because this example specifies the optional argument \texttt{numbered_within} to \texttt{newtheorem} as \texttt{section}, the example, with the same document body, gives ‘Definition 1.1’ and ‘Definition 2.1’.

\newtheorem{defn}{Definition}[section]
\begin{document}
\section{...}
\begin{defn}
First def
\end{defn}
\section{...}
\begin{defn}
Second def
\end{defn}
\end{document}

In this example there are two declarations in the preamble, the second of which calls for the new \texttt{thm} environment to use the same counter as \texttt{defn}. It gives ‘Definition 1.1’, followed by ‘Theorem 2.1’ and ‘Definition 2.2’.

\newtheorem{defn}{Definition}[section]
\newtheorem{thm}[defn]{Theorem}
\begin{document}
\section{...}
\begin{defn}
First def
\end{defn}
\section{...}
\begin{thm}
First thm
\end{thm}
\begin{defn}
Second def
\end{defn}
\end{document}

12.8 \texttt{newfont}: Define a new font (obsolete)
\newfont, now obsolete, defines a command that will switch fonts. Synopsis:

\newfont{\texttt{cmd}}{\texttt{font description}}

This defines a control sequence \texttt{cmd} that will change the current font. \LaTeX{} will look on your system for a file named \texttt{fontname.tfm}. The control sequence must not already be defined. It must begin with a backslash (\texttt{\}).

This command is obsolete. It is a low-level command for setting up an individual font. Today fonts are almost always defined in families (which allows you to, for example, associate a boldface with a roman) through the so-called “New Font Selection Scheme”, either by using \texttt{.fd} files or through the use of an engine that can access system fonts such as \texttt{Xe\LaTeX{}} (see Section 2.3 [\LaTeX{} engines], page 4).
But since it is part of \TeX, here is an explanation: the \textit{font description} consists of a \textit{fontname} and an optional \textit{at clause}; this can have the form either \texttt{at dimen} or \texttt{scaled factor}, where a \textit{factor} of ‘1000’ means no scaling. For \TeX’s purposes, all this does is scale all the character and other font dimensions relative to the font’s design size, which is a value defined in the .tfm file.

This example defines two equivalent fonts and typesets a few characters in each:

\begin{verbatim}
\newfont{\testfontat}{cmb10 at 11pt}
\newfont{\testfontscaled}{cmb10 scaled 11pt}
\testfontat abc
\testfontscaled abc
\end{verbatim}

12.9 \protect

All \TeX commands are either \textit{fragile} or \textit{robust}. Footnotes, line breaks, any command that has an optional argument, and many more, are fragile. A fragile command can break when it is used in the argument to certain commands. To prevent such commands from breaking they must be preceded by the command \protect.

For example, when \TeX runs the \texttt{\section{section name}} command it writes the section name text to the .aux auxiliary file, moving it there for use elsewhere in the document such as in the table of contents. Any argument that is internally expanded by \TeX without typesetting it directly is referred to as a \textit{moving argument}. A command is fragile if it can expand during this process into invalid \TeX code. Some examples of moving arguments are those that appear in the \texttt{\caption{..}} command (see Section 8.10 [figure], page 31), in the \texttt{\thanks{..}} command (see Section 18.1 [maketitle], page 89), and in @-expressions in the \texttt{tabular} and \texttt{array} environments (see Section 8.23 [tabular], page 43).

If you get strange errors from commands used in moving arguments, try preceding it with \protect. Every fragile commands must be protected with their own \protect.

Although usually a \protect command doesn’t hurt, length commands are robust and should not be preceded by a \protect command. Nor can a \protect command be used in the argument to \texttt{\addtocounter} or \texttt{\setcounter} command.

In this example the \caption command gives a mysterious error about an extra curly brace. Fix the problem by preceding each \texttt{\raisebox} command with \protect.

\begin{verbatim}
\begin{figure}
 ..
 \caption{Company headquarters of A\raisebox{1pt}{B}\raisebox{-1pt}{C}}
\end{figure}
\end{verbatim}

In the next example the \texttt{\tableofcontents} command gives an error because the \texttt{\(\ldots\)} in the section title expands to illegal \TeX in the .toc file. You can solve this by changing \texttt{\(\ldots\)} to \texttt{\protect\(\ldots\protect\))}.

\begin{verbatim}
\begin{document}
\tableofcontents
 ..
 \section{Einstein’s \(e=mc^2 \))
 ..
\end{document}
\end{verbatim}
13 Counters

Everything \LaTeX numbers for you has a counter associated with it. The name of the counter is often the same as the name of the environment or command associated with the number, except with no backslash (\). Thus the \chapter command starts a chapter and the chapter counter keeps track of the chapter number. Below is a list of the counters used in \LaTeX's standard document classes to control numbering.

```
part    paragraph   figure   enumi
chapter  subparagraph  table  enumii
section  page  footnote  enumiii
subsection  equation  mpfootnote  enumiv
subsubsection
```

The mpfootnote counter is used by the \footnote command inside of a minipage (see Section 8.18 [minipage], page 36).

The enumi through enumiv counters are used in the enumerate environment, for up to four nested levels (see Section 8.7 [enumerate], page 29).

New counters are created with \newcounter. See Section 12.3 [\newcounter], page 60.

13.1 \alph \Alph \arabic \roman \Roman \fnsymbol: Printing counters

All of these commands take a single counter as an argument, for instance, \alph{enumi}. Note that the counter name does not start with a backslash.

\alph prints counter using lowercase letters: ‘a’, ‘b’, . . .

\arabic uses Arabic numbers: ‘1’, ‘2’, . . .

\fnsymbol prints the value of counter in a specific sequence of nine symbols (conventionally used for labeling footnotes). The value of counter must be between 1 and 9, inclusive.

Here are the symbols (as Unicode code points in ASCII output):

- asterisk(*)
- dagger(†)
- ddagger(‡)
- section-sign(§)
- paragraph-sign(¶)
- parallel(∥)
- double-asterisk(**)
- double-dagger(††)
- double-ddagger(‡‡)

13.2 \usecounter{counter}

Synopsis:

```
\usecounter{counter}
```

In the list environment, when used in the second argument, this command sets up counter to number the list items. It initializes counter to zero, and arranges that when \item
is called without its optional argument then `counter` is incremented by \texttt{\textbackslash refstepcounter}, making its value be the current `ref` value. This command is fragile (see Section 12.9 \texttt{\textbackslash protect}, page 65).

Put in the preamble, this makes a new list environment enumerated with `testcounter`:

\begin{verbatim}
\newcounter{testcounter}
\newenvironment{test}{%\begin{list}{}{%\usecounter{testcounter}}}{%\end{list}}
\end{verbatim}

13.3 \texttt{\textbackslash value}\texttt{\textbackslash counter}

Synopsis:

\begin{verbatim}
\texttt{\textbackslash value}\texttt{\textbackslash counter}
\end{verbatim}

This command expands to the value of `counter`. It is often used in `\setcounter` or `\addtocounter`, but `\value` can be used anywhere that \LaTeX \explains a number. It must not be preceded by \texttt{\textbackslash protect} (see Section 12.9 \texttt{\textbackslash protect}, page 65).

The `\value` command is not used for typesetting the value of the counter. See Section 13.1 \texttt{\textbackslash alph \Alph \arabic \roman \Roman \fnsymbol}, page 66.

This example outputs 'Test counter is 6. Other counter is 5.'.

\begin{verbatim}
\newcounter{test} \setcounter{test}{5}
\newcounter{other} \setcounter{other}{\value{test}}
\addtocounter{test}{1}

Test counter is \arabic{test}.
Other counter is \arabic{other}.
\end{verbatim}

This example inserts $\texttt{\hspace{4\parindent}}$.

\begin{verbatim}
\setcounter{myctr}{5} \addtocounter{myctr}{1}
\hspace{\value{myctr}\parindent}
\end{verbatim}

13.4 \texttt{\textbackslash setcounter}\texttt{\textbackslash counter}\texttt{\textbackslash{value}}

Synopsis:

\begin{verbatim}
\texttt{\textbackslash setcounter}\texttt{\textbackslash counter}\texttt{\textbackslash{value}}
\end{verbatim}

The `\setcounter` command globally sets the value of `counter` to the \texttt{\textbackslash value} argument. Note that the counter name does not start with a backslash.

13.5 \texttt{\textbackslash addtocounter}\texttt{\textbackslash counter}\texttt{\textbackslash{value}}

The `\addtocounter` command globally increments `counter` by the amount specified by the \texttt{\textbackslash value} argument, which may be negative.
13.6 \refstepcounter{counter}

The \refstepcounter command works in the same way as \stepcounter (see Section 13.7 \stepcounter, page 68): it globally increments the value of counter by one and resets the value of any counter numbered within it. (For the definition of “counters numbered within”, see Section 12.3 \newcounter, page 60.)

In addition, this command also defines the current \ref value to be the result of \thecounter.

While the counter value is set globally, the \ref value is set locally, i.e., inside the current group.

13.7 \stepcounter{counter}

The \stepcounter command globally adds one to counter and resets all counters numbered within it. (For the definition of “counters numbered within”, see Section 12.3 \newcounter, page 60.)

13.8 \day \month \year: Predefined counters

LATEX defines counters for the day of the month (\day, 1–31), month of the year (\month, 1–12), and year (\year, Common Era). When LATEX starts up, they are set to the current values on the system where LATEX is running. They are not updated as the job progresses.

The related command \today produces a string representing the current day (see Section 21.6 \today, page 104).
14 Lengths

A length is a measure of distance. Many \LaTeX{} commands take a length as an argument.

Lengths come in two types. A rigid length (what Plain \TeX{} calls a \texttt{dimen}) such as \texttt{10pt} cannot contain a \texttt{plus} or \texttt{minus} component. A rubber length (what Plain \TeX{} calls a \texttt{skip}) can contain those, as with \texttt{1cm plus0.05cm minus0.01cm}. These give the ability to stretch or shrink; the length in the prior sentence could appear in the output as long as 1.05 cm or as short as 0.99 cm, depending on what \TeX{}’s typesetting algorithm finds optimum.

The \texttt{plus} or \texttt{minus} component of a rubber length can contain a \texttt{fill} component, as in \texttt{1in plus2fill}. This gives the length infinite stretchability or shrinkability, so that the length in the prior sentence can be set by \TeX{} to any distance greater than or equal to 1 inch. \TeX{} actually provides three infinite glue components \texttt{fil}, \texttt{fill}, and \texttt{filll}, such that the later ones overcome the earlier ones, but only the middle value is ordinarily used. See Section 19.2 \[\hfill\], page 91, See Section 19.11 \[\vfill\], page 94.

Multiplying an entire rubber length by a number turns it into a rigid length, so that after \texttt{\setlength{\ylength}{1in plus 0.2in}} and \texttt{\setlength{\zlength}{3\ylength}} then the value of \texttt{\zlength} is \texttt{3in}.

14.1 Units of length

\TeX{} and \LaTeX{} know about these units both inside and outside of math mode.

- \texttt{pt} Point 1/72.27 inch. The conversion to metric units, to two decimal places, is 1 point = 2.85 mm = 0.2845 cm.
- \texttt{pc} Pica, 12 pt
- \texttt{in} Inch, 72.27 pt
- \texttt{bp} Big point, 1/72 inch. This length is the definition of a point in PostScript and many desktop publishing systems.
- \texttt{cm} Centimeter
- \texttt{mm} Millimeter
- \texttt{dd} Didot point, 1.07 pt
- \texttt{cc} Cicero, 12 dd
- \texttt{sp} Scaled point, 1/65536 pt

Two other lengths that are often used are values set by the designer of the font. The \texttt{x-height} of the current font \texttt{ex}, traditionally the height of the lower case letter \texttt{x}, is often used for vertical lengths. Similarly \texttt{em}, traditionally the width of the capital letter \texttt{M}, is often used for horizontal lengths (there is also \texttt{\enspace}, which is 0.5\texttt{em}). Use of these can help make a definition work better across font changes. For example, a definition of the vertical space between list items given as \texttt{\setlength{\itemsep}{1ex plus 0.05ex minus 0.01ex}} is more likely to still be reasonable if the font is changed than a definition given in points.

In math mode, many definitions are expressed in terms of the math unit \texttt{mu} given by 1 \texttt{em} = 18 \texttt{mu}, where the \texttt{em} is taken from the current math symbols family. See Section 16.5 [Spacing in math mode], page 86.
14.2 \setlength{\len}{value}

The \setlength sets the value of \len to the value argument, which can be expressed in any units that \LaTeX understands, i.e., inches (in), millimeters (mm), points (pt), big points (bp, etc.

14.3 \addtolength{\len}{amount}

The \addtolength command increments a “length command” \len by the amount specified in the amount argument, which may be negative.

14.4 \settodepth
\settodepth{\gnat}{text}

The \settodepth command sets the value of a length command equal to the depth of the text argument.

14.5 \settoheight
\settoheight{\gnat}{text}

The \settoheight command sets the value of a length command equal to the height of the text argument.

14.6 \settowidth{\len}{text}

The \settowidth command sets the value of the command \len to the width of the text argument.

14.7 Predefined lengths

\width
\height
\depth
\totalheight

These length parameters can be used in the arguments of the box-making commands (see Chapter 20 [Boxes], page 96). They specify the natural width, etc., of the text in the box. \totalheight equals \height + \depth. To make a box with the text stretched to double the natural size, e.g., say

\makebox[2\width]{Get a stretcher}
15 Making paragraphs

A paragraph is ended by one or more completely blank lines—lines not containing even a %. A blank line should not appear where a new paragraph cannot be started, such as in math mode or in the argument of a sectioning command.

15.1 \indent

\indent produces a horizontal space whose width equals to the \parindent length, the normal paragraph indentation. It is used to add paragraph indentation where it would otherwise be suppressed.

The default value for \parindent is 1em in two-column mode, otherwise 15pt for 10pt documents, 17pt for 11pt, and 1.5em for 12pt.

15.2 \noindent

When used at the beginning of the paragraph, this command suppresses any paragraph indentation, as in this example.

.. end of the prior paragraph.

\noindent This paragraph is not indented.

It has no effect when used in the middle of a paragraph.

To eliminate paragraph indentation in an entire document, put \setlength{\parindent}{0pt} in the preamble.

15.3 \parskip

\parskip is a rubber length defining extra vertical space added before each paragraph. The default is 0pt plus1pt.

15.4 Marginal notes

Synopsis:

\marginpar[\textit{left}]{\textit{right}}

The \marginpar command creates a note in the margin. The first line of the note will have the same baseline as the line in the text where the \marginpar occurs.

When you only specify the mandatory argument right, the text will be placed
bullet in the right margin for one-sided layout (option \textit{oneside}, see Section 3.1 \textit{Document class options}, page 7);
bullet in the outside margin for two-sided layout (option \textit{twoside}, see Section 3.1 \textit{Document class options}, page 7);
bullet in the nearest margin for two-column layout (option \textit{twocolumn}, see Section 3.1 \textit{Document class options}, page 7).

The command \reversemarginpar places subsequent marginal notes in the opposite (inside) margin. \normalmarginpar places them in the default position.
When you specify both arguments, \textit{left} is used for the left margin, and \textit{right} is used for the right margin.

The first word will normally not be hyphenated; you can enable hyphenation there by beginning the node with \texttt{\hspace{0pt}}.

These parameters affect the formatting of the note:

\texttt{\marginparpush}

Minimum vertical space between notes; default ‘7pt’ for ‘12pt’ documents, ‘5pt’ else.

\texttt{\marginparsep}

Horizontal space between the main text and the note; default ‘11pt’ for ‘10pt’ documents, ‘10pt’ else.

\texttt{\marginparwidth}

Width of the note itself; default for a one-sided ‘10pt’ document is ‘90pt’, ‘83pt’ for ‘11pt’, and ‘68pt’ for ‘12pt’; ‘17pt’ more in each case for a two-sided document. In two column mode, the default is ‘48pt’.

The standard \LaTeX\ routine for marginal notes does not prevent notes from falling off the bottom of the page.
16 Math formulas

There are three environments that put \LaTeX\ in math mode:

- **math** For formulas that appear right in the text.
- **displaymath** For formulas that appear on their own line.
- **equation** The same as the displaymath environment except that it adds an equation number in the right margin.

The **math** environment can be used in both paragraph and LR mode, but the **displaymath** and **equation** environments can be used only in paragraph mode. The **math** and **displaymath** environments are used so often that they have the following short forms:

\[
\begin{align*}
\text{\(...\)} & \text{instead of } \begin{math} \ldots \end{math} \\
\text{\[\ldots\]} & \text{instead of } \begin{displaymath} \ldots \end{displaymath}
\end{align*}
\]

In fact, the **math** environment is so common that it has an even shorter form:

\[
\begin{align*}
\$ \ldots \$ & \text{instead of } \begin{math} \ldots \end{math}
\end{align*}
\]

The **\boldmath** command changes math letters and symbols to be in a bold font. It is used outside of math mode. Conversely, the **\unboldmath** command changes math glyphs to be in a normal font; it too is used outside of math mode.

The **\displaystyle** declaration forces the size and style of the formula to be that of **displaymath**, e.g., with limits above and below summations. For example:

\[
\begin{align*}
$\\displaystyle \sum_{n=0}^{\infty} x_n$
\end{align*}
\]

16.1 Subscripts & superscripts

In math mode, use the caret character ~ to make the exp appear as a superscript, i.e. type ^{exp}. Similarly, in math mode, underscore _{exp} makes a subscript out of exp.

In this example the 0 and 1 appear as subscripts while the 2 is a superscript.

\[
\begin{align*}
\text{(x}_0+x_1)^2
\end{align*}
\]

To have more than one character in exp use curly braces as in e^{-2x}.

\LaTeX\ handles superscripts on superscripts, and all of that stuff, in the natural way, so expressions such as e^{-x^2} and x_{a_0} will look right. It also does the right thing when something has both a subscript and a superscript. In this example the 0 appears at the bottom of the integral sign while the 10 appears at the top.

\[
\begin{align*}
\text{\int}_0^{10} x^2 \, dx
\end{align*}
\]

You can put a superscript or subscript before a symbol with a construct such as \{t}_{k^2} in math mode (the initial \{ prevents the prefixed subscript from being attached to any prior symbols in the expression).

Outside of math mode, a construct like A test$_\text{\normal{subscript}}$ will produce a subscript typeset in text mode, not math mode. Note that there are packages specialized for writing Chemical formulas such as \texttt{mhchem}.
16.2 Math symbols

\LaTeX provides almost any mathematical symbol you’re likely to need. For example, if you include π in your source, you will get the pi symbol π.

Below is a list of commonly-available symbols. It is by no means an exhaustive list. Each symbol here is described with a short phrase, and its symbol class (which determines the spacing around it) is given in parenthesis. The commands for these symbols can be used only in math mode.

<table>
<thead>
<tr>
<th>Command</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\parallel</td>
<td>$|$</td>
<td>Parallel (relation). Synonym: \parallel.</td>
</tr>
<tr>
<td>\aleph</td>
<td>\aleph</td>
<td>Aleph, transfinite cardinal (ordinary).</td>
</tr>
<tr>
<td>\alpha</td>
<td>α</td>
<td>Lower case Greek letter alpha (ordinary).</td>
</tr>
<tr>
<td>\amalg</td>
<td>\amalg</td>
<td>Disjoint union (binary).</td>
</tr>
<tr>
<td>\angle</td>
<td>\angle</td>
<td>Geometric angle (ordinary). Similar: less-than sign $<$ and angle bracket \langle.</td>
</tr>
<tr>
<td>\approx</td>
<td>\approx</td>
<td>Almost equal to (relation).</td>
</tr>
<tr>
<td>\ast</td>
<td>\ast</td>
<td>Asterisk operator, convolution, six-pointed (binary). Synonym: \ast, which is often a superscript or subscript, as in the Kleene star. Similar: \star, which is five-pointed, and is sometimes used as a general binary operation, and sometimes reserved for cross-correlation.</td>
</tr>
<tr>
<td>\asymp</td>
<td>\asymp</td>
<td>Asymptotically equivalent (relation).</td>
</tr>
<tr>
<td>\backslash</td>
<td>\backslash</td>
<td>Backslash (ordinary). Similar: set minus \setminus, and \textbackslash for backslash outside of math mode.</td>
</tr>
<tr>
<td>\beta</td>
<td>β</td>
<td>Lower case Greek letter beta (ordinary).</td>
</tr>
<tr>
<td>\bigcap</td>
<td>\bigcap</td>
<td>Variable-sized, or n-ary, intersection (operator). Similar: binary intersection \cap.</td>
</tr>
<tr>
<td>\bigcirc</td>
<td>\bigcirc</td>
<td>Variable-sized, or n-ary, circled dot operator (operator).</td>
</tr>
<tr>
<td>\bigcup</td>
<td>\bigcup</td>
<td>Variable-sized, or n-ary, circular plus operator (operator).</td>
</tr>
<tr>
<td>\bigodot</td>
<td>\bigodot</td>
<td>Variable-sized, or n-ary, circled times operator (operator).</td>
</tr>
<tr>
<td>\bigtriangledown</td>
<td>\bigtriangledown</td>
<td>Variable-sized, or n-ary, open triangle pointing down (operator).</td>
</tr>
<tr>
<td>\bigtriangledownup</td>
<td>\bigtriangledownup</td>
<td>Variable-sized, or n-ary, open triangle pointing up (operator).</td>
</tr>
<tr>
<td>\bigsqcup</td>
<td>\bigsqcup</td>
<td>Variable-sized, or n-ary, square union (operator).</td>
</tr>
</tbody>
</table>
\biguplus

| \biguplus Variable-sized, or n-ary, union operator with a plus (operator). (Note that the name has only one p.) |
| \bigvee Variable-sized, or n-ary, logical-and (operator). |
| \bigwedge Variable-sized, or n-ary, logical-or (operator). |
| \bot \bot Up tack, bottom, least element of a poset, or a contradiction (ordinary). See also \top. |
| \bowtie \bowtie Natural join of two relations (relation). |
| \Box \Box Modal operator for necessity; square open box (ordinary). This is not available in Plain \TeX. In \LaTeX you need to load the \texttt{amssymb} package. |
| \bullet \bullet Bullet (binary). Similar: multiplication dot \texttt{\cdot}. |
| \cap \cap Intersection of two sets (binary). Similar: variable-sized operator \texttt{\bigcap}. |
| \cdot \cdot Multiplication (binary). Similar: Bullet dot \texttt{\bullet}. |
| \chi \chi Lower case Greek chi (ordinary). |
| \circ \circ Function composition, ring operator (binary). Similar: variable-sized operator \texttt{\circ}. |
| \clubsuit \clubsuit Club card suit (ordinary). |
| \complement \complement Set complement, used as a superscript as in S^\complement (ordinary). This is not available in Plain \TeX. In \LaTeX you should load the \texttt{amssymb} package. Also used: $S^{\text{\mathsf{c}}}$ or \bar{S}. |
| \cong \cong Congruent (relation). |
| \coprod \coprod \coprod Coproduct (operator). |
| \cup \cup Union of two sets (binary). Similar: variable-sized operator \texttt{\bigcup}. |
| \dagger \dagger Dagger relation (binary). |
| \dashv \dashv Dash with vertical, reversed turnstile (relation). Similar: turnstile \texttt{\vdash}. |
| \ddagger \ddagger Double dagger relation (binary). |
| \Delta \Delta Greek upper case delta, used for increment (ordinary). |
| \delta \delta Greek lower case delta (ordinary). |
| \Diamond \Diamond Large diamond operator (ordinary). This is not available in Plain \TeX. In \LaTeX you must load the \texttt{amssymb} package. |
| \diamond \diamond Diamond operator, or diamond bullet (binary). Similar: large diamond \texttt{\Diamond}, circle bullet \texttt{\bullet}. |
| \diamondsuit \diamondsuit Diamond card suit (ordinary). |
\div \div Division sign (binary).
\doteq \doteq Approaches the limit (relation). Similar: geometrically equal to \Doteq.
\downarrow \downarrow Down arrow, converges (relation). Similar: double line down arrow \Downarrow.
\Downarrow \Downarrow Double line down arrow (relation). Similar: single line down arrow \downarrow.
\ell \ell Lower-case cursive letter l (ordinary).
\emptyset \emptyset Empty set symbol (ordinary). Similar: reversed empty set \varnothing.
\epsilon \epsilon Lower case Greek-text letter (ordinary). More widely used in mathematics is the curly epsilon \varepsilon. Related: the set membership relation \in ∈.
\equiv \equiv Equivalence (relation).
\eta \eta Lower case Greek letter (ordinary).
\exists \exists Existential quantifier (ordinary).
\flat \flat Musical flat (ordinary).
\forall \forall Universal quantifier (ordinary).
\frown \frown Downward curving arc (ordinary).
\Gamma \Gamma Upper case Greek letter (ordinary).
\gamma \gamma Lower case Greek letter (ordinary).
\ge \ge Greater than or equal to (relation). This is a synonym for \geq.
\geq \geq Greater than or equal to (relation). This is a synonym for \ge.
\gets \gets Is assigned the value (relation). Synonym: \leftarrow.
\gg \gg Much greater than (relation). Similar: much less than \ll.
\hbar \hbar Planck constant over two pi (ordinary).
\heartsuit \heartsuit Heart card suit (ordinary).
\hookleftarrow \hookrightarrow Hooked left arrow (relation).
\hookrightarrow Hooked right arrow (relation).
\iff \iff If and only if (relation). It is \Longleftrightarrow with a \thickmuskip on either side.
\Im \Im Imaginary part (ordinary). See: real part \Re.
\in \quad \in \text{ Set element (relation). See also: lower case Greek letter epsilon } \texttt{\textbackslash epsilon} \text{ and rounded small epsilon } \texttt{\textbackslash varepsilon}.

\infty \quad \infty \text{ Infinity (ordinary).}

\int \quad \int \text{ Integral (operator).}

\iota \quad \iota \text{ Lower case Greek letter (ordinary).}

\Join \quad \Join \text{ Condensed bowtie symbol (relation). Not available in Plain \LaTeX.}

\kappa \quad \kappa \text{ Lower case Greek letter (ordinary).}

\Lambda \quad \Lambda \text{ Upper case Greek letter (ordinary).}

\lambda \quad \lambda \text{ Lower case Greek letter (ordinary).}

\land \quad \land \text{ Logical and (binary). This is a synonym for } \texttt{\textbackslash wedge}. \text{ See also logical or } \texttt{\textbackslash lor}.

\langle \quad \langle \text{ Left angle, or sequence, bracket (opening). Similar: less-than } \langle. \text{ Matches } \rangle.

\lbrace \quad \{ \text{ Left curly brace (opening). Synonym: } \texttt{\textbackslash x}. \text{ Matches } \rbrace.

\lbrack \quad [\text{ Left square bracket (opening). Synonym: } \texttt{\textbackslash x}. \text{ Matches } \rbrack.

\lceil \quad \lceil \text{ Left ceiling bracket, like a square bracket but with the bottom shaved off (opening). Matches } \rceil.

\le \quad \le \text{ Less than or equal to (relation). This is a synonym for } \texttt{\textbackslash leq}.

\leadsto \quad \leadsto \text{ Squiggly right arrow (relation). This is not available in Plain \LaTeX. In \LaTeX you should load the \texttt{amssymb} package. To get this symbol outside of math mode you can put } \texttt{\newcommand*{\Leadsto}{\ensuremath{\leadsto}}} \text{ in the preamble and then use } \texttt{\Leadsto} \text{ instead.}

\Leftarrow \quad \Leftarrow \text{ Is implied by, double-line left arrow (relation). Similar: single-line left arrow } \texttt{\textbackslash leftarrow}.

\leftarrow \quad \leftarrow \text{ Single-line left arrow (relation). Synonym: } \texttt{\textbackslash gets}. \text{ Similar: double-line left arrow } \texttt{\textbackslash Leftarrow}.

\leftharpoondown \quad \leftharpoondown \quad \text{ Single-line left harpoon, barb under bar (relation).}

\leftharpoonup \quad \leftharpoonup \quad \text{ Single-line left harpoon, barb over bar (relation).}

\Lefttrightarrow \quad \Lefttrightarrow \text{ Bi-implication; double-line double-headed arrow (relation). Similar: single-line double headed arrow } \texttt{\textbackslash Lefttrightarrow}.

\LeftRightarrow \quad \LeftRightarrow \text{ Single-line double-headed arrow (relation). Similar: double-line double head arrow } \texttt{\textbackslash LeftRightarrow}.

\leq \quad \leq \text{ Less than or equal to (relation). This is a synonym for } \texttt{\textbackslash le}.
\texttt{\textbackslash floor} \quad | \quad \text{Left floor bracket (opening)}.

\texttt{\textbackslash lhd} \quad \texttt{\textbackslash lhd} \quad \text{Arrowhead, that is, triangle, pointing left (binary). This is not available in Plain \TeX. In} \LaTeX \text{you should load the \texttt{amssymb} package. For the normal subgroup symbol you should load \texttt{amssymb} and use \texttt{\vartriangleleft} (which is a relation and so gives better spacing).}

\texttt{\textbackslash ll} \quad \ll \quad \text{Much less than (relation). Similar: much greater than \texttt{\gg}.}

\texttt{\textbackslash lnot} \quad \neg \quad \text{Logical negation (ordinary). Synonym: \texttt{\neg}.}

\texttt{\textbackslash longleftarrow} \quad \text{Long single-line left arrow (relation). Similar: long double-line left arrow \texttt{\Longleftarrow}.}

\texttt{\textbackslash longleftrightharpoonup} \quad \text{Long single-line double-headed arrow (relation). Similar: long double-line double-headed arrow \texttt{\Leftrightarrow}.}

\texttt{\textbackslash longmapsto} \quad \text{Long single-line left arrow starting with vertical bar (relation). Similar: shorter version \texttt{\mapsto}.}

\texttt{\textbackslash longrightarrow} \quad \text{Long single-line right arrow (relation). Similar: long double-line right arrow \texttt{\Longrightarrow}.}

\texttt{\textbackslash lor} \quad \lor \quad \text{Logical or (binary). Synonym: wedge \texttt{\wedge}.}

\texttt{\textbackslash mapsto} \quad \mapsto \quad \text{Single-line left arrow starting with vertical bar (relation). Similar: longer version \texttt{\longmapsto}.}

\texttt{\textbackslash mho} \quad \mho \quad \text{Conductance, half-circle rotated capital omega (ordinary). This is not available in Plain \TeX. In} \LaTeX \text{you should load the \texttt{amssymb} package.}

\texttt{\textbackslash mid} \quad | \quad \text{Single-line vertical bar (relation). A typical use of \texttt{\mid} is for a set \{x \mid x \geq 5 \}.}

\texttt{\models} \quad \models \quad \text{Entails, or satisfies; double turnstile, short double dash (relation). Similar: long double dash \texttt{\vdash}.}

\texttt{\mp} \quad \mp \quad \text{Minus or plus (relation).}

\texttt{\mu} \quad \mu \quad \text{Lower case Greek letter (ordinary).}

\texttt{\nabla} \quad \nabla \quad \text{Hamilton’s del, or differential, operator (ordinary).}

\texttt{\natural} \quad \natural \quad \text{Musical natural notation (ordinary).}

\texttt{\ne} \quad \ne \quad \text{Not equal (relation). Synonym: \texttt{\neq}.}

\texttt{\nearrow} \quad \nearrow \quad \text{North-east arrow (relation).}
\neg \quad \text{ Logical negation (ordinary). Synonym: } \\neg\neg . \text{ Sometimes instead used for negation: } \\sim .

\neq \quad \ne \quad \text{ Not equal (relation). Synonym: } \\ne .

\ni \quad \ni \quad \text{ Reflected membership epsilon; has the member (relation). Synonym: } \owns . \text{ Similar: is a member of } \in .

\not \quad \text{ Long solidus, or slash, used to overstrike a following operator (relation).}
\text{ Many negated operators that don’t require } \not \text{ are available, particularly with the } \texttt{amssymb} \text{ package. For example, } \not\in \text{ is probably typographically preferable to } \not\in .

\notin \quad \not\in \quad \text{ Not an element of (relation). Similar: not subset of } \not\subseteq .

\nu \quad \nu \quad \text{ Lower case Greek letter (ordinary).}

\nwarrow \quad \nwarrow \quad \text{ North-west arrow (relation).}

\odot \quad \odot \quad \text{ Dot inside a circle (binary). Similar: variable-sized operator } \texttt{bigodot} .

\oint \quad \oint \quad \text{ Contour integral, integral with circle in the middle (operator).}

\Omega \quad \Omega \quad \text{ Upper case Greek letter (ordinary).}

\omega \quad \omega \quad \text{ Lower case Greek letter (ordinary). The variant form is } \varphi \varphi .

\ominus \quad \ominus \quad \text{ Minus sign, or dash, inside a circle (binary).}

\oplus \quad \oplus \quad \text{ Plus sign inside a circle (binary). Similar: variable-sized operator } \texttt{bigoplus} .

\oslash \quad \oslash \quad \text{ Solidus, or slash, inside a circle (binary).}

\otimes \quad \otimes \quad \text{ Times sign, or cross, inside a circle (binary). Similar: variable-sized operator } \texttt{bigotimes} .

\owns \quad \owns \quad \text{ Reflected membership epsilon; has the member (relation). Synonym: } \ni . \text{ Similar: is a member of } \in .

\parallel \quad \parallel \quad \text{ Parallel (relation). Synonym: } \| .

\partial \quad \partial \quad \text{ Partial differential (ordinary).}

\perp \quad \perp \quad \text{ Perpendicular (relation). Similar: } \bot \text{ uses the same glyph but the spacing is different because it is in the class ordinary.}

\phi \quad \phi \quad \text{ Lower case Greek letter (ordinary). The variant form is } \varphi \varphi .

\Pi \quad \Pi \quad \text{ Upper case Greek letter (ordinary).}

\pi \quad \pi \quad \text{ Lower case Greek letter (ordinary). The variant form is } \varpi \varpi .

\pm \quad \pm \quad \text{ Plus or minus (binary).}

\prec \quad \prec \quad \text{ Preceeds (relation). Similar: less than } < .

\preceq \quad \preceq \quad \text{ Preceeds or equals (relation). Similar: less than or equals } \leq .
\prime A' \prime, or minute in a time expression (ordinary). Typically used as a super-
script A^{\prime}. Note that f' and f' produce the same result. An advantage of the second is that f'' produces the the desired symbol, that is, the same result as $f\{\prime\prime\prime\}$. Note that you can only use \prime in math mode but you can type right single quote ’ in text mode also, although it results in a different look than in math mode.

\prod \prod Product (operator).
\propto \propto Is proportional to (relation)
\Psi Ψ Upper case Greek letter (ordinary).
\psi ψ Lower case Greek letter (ordinary).
\rangle \rangle Right angle, or sequence, bracket (closing). Similar: greater than >. Matches: \angle.
\rbrace \rbrace Right curly brace (closing). Synonym: \}. Matches \{brace.
\rbrack \rbrack Right square bracket (closing). Synonym:]. Matches \brack.
\rceil \rceil Right ceiling bracket (closing). Matches \lceil.
\Re \Re Real part, real numbers, cursive capital R (ordinary). Related: double-line, or blackboard bold, R \mathbb{R}; to access this, load the amsfonts package.

\restriction \restriction Restriction of a function (relation). Synonym: \upharpoonright.
Not available in Plain \TeX. In \LaTeX you should load the amssymb package.
\rfloor \rfloor Right floor bracket, a right square bracket with the top cut off (closing).
Matches \lfloor.
\rhd \rhd Arrowhead, that is, triangle, pointing right (binary). This is not available in Plain \TeX. In \LaTeX you should load the amssymb package. For the normal subgroup symbol you should instead load amssymb and use \vartriangleright (which is a relation and so gives better spacing).
\rho ρ Lower case Greek letter (ordinary). The variant form is \varrho ρ.
\Rightarrow \Rightarrow Implies, right-pointing double line arrow (relation). Similar: right single-line arrow \rightarrow.
\rightarrow \rightarrow Right-pointing single line arrow (relation). Synonym: \to. Similar: right double line arrow \Rightarrow.
\rightharpoondown \rightharpoondown Right-pointing harpoon with barb below the line (relation).
\rightharpoonup \rightharpoonup Right-pointing harpoon with barb above the line (relation).
\rightleftharpoons \rightleftharpoons Right harpoon up above left harpoon down (relation).
\searrow \searrow Arrow pointing southeast (relation).
\setminus \setminus Set difference, reverse solidus or slash, like \ (binary). Similar: backslash \backslash and also \textbackslash outside of math mode.
\sharp \sharp Musical sharp (ordinary).
\Sigma \Sigma Upper case Greek letter (ordinary).
\sigma \sigma Lower case Greek letter (ordinary). The variant form is \varsigma \varsigma.
\sim \sim Similar, in a relation (relation).
\simeq \simeq Similar or equal to, in a relation (relation).
\smallint \smallint Integral sign that does not change to a larger size in a display (operator).
\smile \smile Upward curving arc (ordinary).
\spadesuit \spadesuit Spade card suit (ordinary).
\sqcap \sqcap Square intersection symbol (binary). Similar: intersection \cap.
\sqcup \sqcup Square union symbol (binary). Similar: union \cup. Related: variable-sized operator \bigsqcup.
\sqsubset \sqsubset Square subset symbol (relation). Similar: subset \subset. This is not available in Plain \TeX. In \LaTeX you should load the amssymb package.
\sqsubseteq \sqsubseteq Square subset or equal symbol (binary). Similar: subset or equal to \subseteq.
\sqsupset \sqsupset Square superset symbol (relation). Similar: superset \supset. This is not available in Plain \TeX. In \LaTeX you should load the amssymb package.
\sqsupseteq \sqsupseteq Square superset or equal symbol (binary). Similar: superset or equal \supseteq.
\star \star Five-pointed star, sometimes used as a general binary operation but sometimes reserved for cross-correlation (binary). Similar: the synonyms asterisk * and \ast, which are six-pointed, and more often appear as a superscript or subscript, as with the Kleene star.
\subset \subset Subset (occasionally, is implied by) (relation).
\subseteq \subseteq Subset or equal to (relation).
\succ \succ Comes after, succeeds (relation). Similar: is less than >.
\succeq \succeq Succeeds or is equal to (relation). Similar: less than or equal to \leq.
\sum \quad \text{Summation (operator). Similar: Greek capital sigma \(\Sigma \).}
\supset \quad \text{Superset (relation).}
\supseteq \quad \text{Superset or equal to (relation).}
\supseteq \quad \text{Superset or equal to (relation).}
\sqrt{..} \quad \text{Radical symbol (ordinary). The \LaTeX command \(\sqrt{..} \) typesets the square root of the argument, with a bar that extends to cover the argument.}
\swarrow \quad \text{Southwest-pointing arrow (relation).}
\tau \quad \text{Lower case Greek letter (ordinary).}
\theta \quad \text{Lower case Greek letter (ordinary). The variant form is \(\vartheta \).}
\times \quad \text{Primary school multiplication sign (binary). See also \(\cdot \).}
\to \quad \text{Right-pointing single line arrow (relation). Synonym: \(\rightarrow \).}
\top \quad \text{Top, greatest element of a poset (ordinary). See also \(\bot \).}
\triangle \quad \text{Triangle (ordinary).}
\triangleleft \quad \text{Not-filled triangle pointing left (binary). Similar: \(\lhd \). For the normal subgroup symbol you should load \texttt{amssymb} and use \(\vartriangleleft \) (which is a relation and so gives better spacing).}
\triangleright \quad \text{Not-filled triangle pointing right (binary). For the normal subgroup symbol you should instead load \texttt{amssymb} and use \(\vartriangleright \) (which is a relation and so gives better spacing).}
\unlhd \quad \text{Left-pointing not-filled arrowhead, that is, triangle, with a line under (binary). This is not available in Plain \TeX. In \LaTeX you should load the \texttt{amssymb} package. For the normal subgroup symbol load \texttt{amssymb} and use \(\vartrianglelefteq \) (which is a relation and so gives better spacing).}
\unrhd \quad \text{Right-pointing not-filled arrowhead, that is, triangle, with a line under (binary). This is not available in Plain \TeX. In \LaTeX you should load the \texttt{amssymb} package. For the normal subgroup symbol load \texttt{amssymb} and use \(\vartrianglerighteq \) (which is a relation and so gives better spacing).}
\Uparrow \quad \text{Double-line upward-pointing arrow (relation). Similar: single-line up-pointing arrow \(\uparrow \).}
\uparrow \quad \text{Single-line upward-pointing arrow, diverges (relation). Similar: double-line up-pointing arrow \(\Uparrow \).}
\Updownarrow \quad \text{Double-line upward-and-downward-pointing arrow (relation). Similar: single-line upward-and-downward-pointing arrow \(\updownarrow \).}
\downarrow \quad \text{Single-line upward-and-downward-pointing arrow (relation). Similar: double-line upward-and-downward-pointing arrow \(\Uparrow \).}
\texttt{\upharpoonright}

\texttt{\upharpoonright} Up harpoon, with barb on right side (relation).
Synonym: \texttt{\restriction}. Not available in Plain \TeX. In \LaTeX you should load the \texttt{amssymb} package.

\texttt{\uplus}

\texttt{\uplus} Multiset union, a union symbol with a plus symbol in the middle (binary).
Similar: union \texttt{\cup}. Related: variable-sized operator \texttt{\biguplus}.

\texttt{\Upsilon}

\texttt{\Upsilon} Upper case Greek letter (ordinary).

\texttt{\upsilon}

\texttt{\upsilon} Lower case Greek letter (ordinary).

\texttt{\varepsilon}

\texttt{\varepsilon} Rounded small epsilon (ordinary). This is more widely used in mathematics than the non-variant lower case Greek-text letter form \texttt{\epsilon}. Related: set membership \texttt{\in}.

\texttt{\varphi}

\texttt{\varphi} Variant on the lower case Greek letter (ordinary). The non-variant form is \texttt{\phi}.

\texttt{\varpi}

\texttt{\varpi} Variant on the lower case Greek letter (ordinary). The non-variant form is \texttt{\pi}.

\texttt{\varepsilon}

\texttt{\varepsilon} Variant on the lower case Greek letter (ordinary). The non-variant form is \texttt{\rho}.

\texttt{\varsigma}

\texttt{\varsigma} Variant on the lower case Greek letter (ordinary). The non-variant form is \texttt{\sigma}.

\texttt{\vartheta}

\texttt{\vartheta} Variant on the lower case Greek letter (ordinary). The non-variant form is \texttt{\theta}.

\texttt{\vdash}

\texttt{\vdash} Provable; turnstile, vertical and a dash (relation). Similar: turnstile rotated a half-circle \texttt{\dashv}.

\texttt{\vee}

\texttt{\vee} Logical or; a downwards v shape (binary). Related: logical and \texttt{\wedge}. Similar: variable-sized operator \texttt{\bigvee}.

\texttt{\mid}

For such that, as in the definition of a set, use \texttt{\mid} because it is a relation.
For absolute value you can use the `mathtools` package and add \DeclarePairedDelimiter\abs{\lvert}{\rvert} to your preamble. This gives you three command variants for single-line vertical bars that are correctly horizontally spaced: if in the document body you write the starred version $\abs*{\frac{22}{7}}$ then the height of the vertical bars will match the height of the argument, whereas with \abs{\frac{22}{7}} the bars do not grow with the height of the argument but instead are the default height, and \abs[size command]{\frac{22}{7}} also gives bars that do not grow but are set to the size given in the size command, e.g., \Bigg.

\texttt{\wedge} Logical and (binary). Synonym: \texttt{\land}. See also logical or \texttt{\vee}. Similar: variable-sized operator \texttt{\bigwedge}.

\texttt{\wp} Weierstrass p (ordinary).
\texttt{\wr} Wreath product (binary).
\texttt{\Xi} Upper case Greek letter (ordinary).
\texttt{\xi} Lower case Greek letter (ordinary).
\texttt{\zeta} Lower case Greek letter (ordinary).

16.3 Math functions

These commands produce roman function names in math mode with proper spacing.

\texttt{\arccos} arccos
\texttt{\arcsin} arcsin
\texttt{\arctan} arctan
\texttt{\arg} arg
\texttt{\bmod} Binary modulo operator \((x \mod y)\)
\texttt{\cos} cos
\texttt{\cosh} cosh
\texttt{\cot} cot
\texttt{\coth} coth
\texttt{\csc} csc
\texttt{\deg} deg
\texttt{\det} det
\texttt{\dim} dim
\texttt{\exp} exp
\texttt{\gcd} gcd
\texttt{\hom} hom
\texttt{\inf} inf
\ker \quad \ker
\lg \quad \lg
\lim \quad \lim
\liminf \quad \lim \inf
\limsup \quad \lim \ sup
\ln \quad \ln
\log \quad \log
\max \quad \max
\min \quad \min
\pmod \quad \text{parenthesized modulus, as in } (\ (\text{mod } 2)^n - 1)
\Pr \quad \Pr
\sec \quad \sec
\sin \quad \sin
\sinh \quad \sinh
\sup \quad \sup
\tan \quad \tan
\tanh \quad \tanh

16.4 Math accents

\text{\LaTeX} provides a variety of commands for producing accented letters in math. These are different from accents in normal text (see Section 21.3 [Accents], page 102).

\acute \quad \text{Math acute accent: } \acute{x}.
\bar \quad \text{Math bar-over accent: } \bar{x}.
\breve \quad \text{Math breve accent: } \breve{x}.
\check \quad \text{Math h\’{a}ˇ{c}ek (check) accent: } \check{x}.
\ddot \quad \text{Math dieresis accent: } \ddot{x}.
\dot \quad \text{Math dot accent: } \dot{x}.
\grave \quad \text{Math grave accent: } \grave{x}.
\hat \quad \text{Math hat (circumflex) accent: } \hat{x}.
\imath \quad \text{Math dotless i.}
\jmath \quad \text{Math dotless j.}
\mathring \quad \text{Math ring accent: } \mathring{x}.
\tilde \quad \text{Math tilde accent: } \tilde{x}.
\textbf{\textbackslash vec} \hspace{0.5cm} \text{Math vector symbol: \(\vec{x} \).}

\textbf{\textbackslash widehat} \hspace{0.5cm} \text{Math wide hat accent: \(\widehat{x+y} \).}

\textbf{\textbackslash widetilde} \hspace{0.5cm} \text{Math wide tilde accent: \(\tilde{x+y} \).}

16.5 Spacing in math mode

In a \texttt{math} environment, \LaTeX{} ignores the spaces that you use in the source, and instead puts in the spacing according to the normal rules for mathematics texts.

Many math mode spacing definitions are expressed in terms of the math unit \textit{mu} given by \(1 \text{ em} = 18 \mu \), where the \emph{em} is taken from the current math symbols family (see Section 14.1 [Units of length], page 69). \LaTeX{} provides the following commands for use in math mode:

- \texttt{\;}: Normally \(5.0\mu + 5.0\mu \). The longer name is \texttt{\thickspace}. Math mode only.
- \texttt{\!:} Normally \(4.0\mu + 2.0\mu - 4.0\mu \). The longer name is \texttt{\medspace}. Math mode only.
- \texttt{\!,}: Normally \(3\mu \). The longer name is \texttt{\thinspace}. This can be used in both math mode and text mode.
- \texttt{\!\!}: A negative thin space. Normally \(-3\mu \). Math mode only.
- \texttt{\quad}: This is \(18\mu \), that is, \(1 \text{ em} \). This is often used for space surrounding equations or expressions, for instance for the space between two equations inside a \texttt{displaymath} environment. It is available in both text and math mode.
- \texttt{\qquad}: A length of 2 quads, that is, \(36\mu = 2 \text{ em} \). It is available in both text and math mode.

In this example a \texttt{\thinspace} separates the function from the infinitesimal.

\[
\int_0^1 f(x) \, dx
\]

16.6 Math miscellany

- \texttt{*}: A “discretionary” multiplication symbol, at which a line break is allowed.
- \texttt{\cdots}: A horizontal ellipsis with the dots raised to the center of the line. As in: ···.
- \texttt{\ddots}: A diagonal ellipsis: ⋯.
- \texttt{\frac{}{}}: Produces the fraction \(\text{num} \) divided by \(\text{den} \).

 \text{eg.} \(\frac{1}{2} \)

\texttt{\left delim1 \ldots \right delim2}

The two delimiters need not match; ‘.’ acts as a null delimiter, producing no output. The delimiters are sized according to the math in between. Example:

\[
\left(\sum_{i=1}^{10} a_i \right).
\]
\overbrace{\text{text}} \quad k \text{ times}

Generates a brace over text. For example, $\overbrace{x + \cdots + x}$.

\overline{\text{text}}

Generates a horizontal line over text. For example, $\overline{x + y}$.

\sqrt[root]{\text{arg}}

Produces the representation of the square root of arg. The optional argument root determines what root to produce. For example, the cube root of $x+y$ would be typed as $\sqrt[3]{x+y}$. In \TeX, the result looks like this: $\sqrt[3]{x+y}$.

\stackrel{\text{text}}{\text{relation}}

Puts text above relation. For example, $\stackrel{f}{\longrightarrow}$. In \TeX, the result looks like this: $f \rightarrow$.

\underbrace{\text{math}}

Generates math with a brace underneath. In \TeX, the result looks like this: $x + y + z$.

\underline{\text{text}}

Causes text, which may be either math mode or not, to be underlined. The line is always below the text, taking account of descenders. In \TeX, the result looks like this: \underline{xyz}.

\vdots

Produces a vertical ellipsis. In \TeX, the result looks like this: \vdots.
17 Modes

When \LaTeX{} is processing your input text, it is always in one of three modes:

- **Paragraph mode**
- **Math mode**
- **Left-to-right mode, called LR mode for short**

Mode changes occur only when entering or leaving an environment, or when \LaTeX{} is processing the argument of certain text-producing commands.

Paragraph mode is the most common; it’s the one \LaTeX{} is in when processing ordinary text. In this mode, \LaTeX{} breaks the input text into lines and breaks the lines into pages.

\LaTeX{} is in **math mode** when it’s generating a mathematical formula, either displayed math or within a line.

In **LR mode**, as in paragraph mode, \LaTeX{} considers the output that it produces to be a string of words with spaces between them. However, unlike paragraph mode, \LaTeX{} keeps going from left to right; it never starts a new line in LR mode. Even if you put a hundred words into an \texttt{\textbackslash mbox}, \LaTeX{} would keep typesetting them from left to right inside a single box (and then most likely complain because the resulting box was too wide to fit on the line). \LaTeX{} is in LR mode when it starts making a box with an \texttt{\textbackslash mbox} command. You can get it to enter a different mode inside the box—for example, you can make it enter math mode to put a formula in the box.

There are also several text-producing commands and environments for making a box that put \LaTeX{} into paragraph mode. The box made by one of these commands or environments will be called a **parbox**. When \LaTeX{} is in paragraph mode while making a box, it is said to be in “inner paragraph mode” (no page breaks). Its normal paragraph mode, which it starts out in, is called “outer paragraph mode”.
Chapter 18: Page styles

The \documentclass command determines the size and position of the page’s head and foot. The page style determines what goes in them.

18.1 \maketitle

The \maketitle command generates a title on a separate title page—except in the article class, where the title is placed at the top of the first page. Information used to produce the title is obtained from the following declarations:

\author{\textit{name} \text{\text{\textand} name2}}

The \author command declares the document author(s), where the argument is a list of authors separated by \text{\textand} commands. Use \text{\textbackslash} to separate lines within a single author’s entry—for example, to give the author’s institution or address.

\date{\textit{text}}

The \date command declares \textit{text} to be the document’s date. With no \date command, the current date (see Section 21.6 [today], page 104) is used.

\thanks{\textit{text}}

The \thanks command produces a \footnote to the title, usually used for credit acknowledgements.

\title{\textit{text}}

The \title command declares \textit{text} to be the title of the document. Use \text{\textbackslash} to force a line break, as usual.

18.2 \pagenumbering

Synopsis:

\pagenumbering{style}

Specifies the style of page numbers, according to \textit{style}; also resets the page number to 1. The \textit{style} argument is one of the following:

arabic arabic numerals
roman lowercase Roman numerals
Roman uppercase Roman numerals
alph lowercase letters
Alph uppercase letters

18.3 \pagestyle

Synopsis:

\pagestyle{style}

The \pagestyle command specifies how the headers and footers are typeset from the current page onwards. Values for \textit{style}:
Chapter 18: Page styles

plain Just a plain page number.
empty Empty headers and footers, e.g., no page numbers.
headings Put running headers on each page. The document style specifies what goes in the headers.
myheadings Custom headers, specified via the \markboth or the \markright commands.

Here are the descriptions of \markboth and \markright:

\markboth{left}{right}
Sets both the left and the right heading. A “left-hand heading” (left) is generated by the last \markboth command before the end of the page, while a “right-hand heading” (right) is generated by the first \markboth or \markright that comes on the page if there is one, otherwise by the last one before the page.

\markright{right}
Sets the right heading, leaving the left heading unchanged.

18.4 \thispagestyle{style}
The \thispagestyle command works in the same manner as the pagestyle command (see previous section) except that it changes to style for the current page only.
19 Spaces

\LaTeX{} has many ways to produce white (or filled) space.

19.1 \texttt{\hspace}

Synopsis:

\hspace{\texttt{length}}
\hspace*{\texttt{length}}

Add the horizontal space given by \texttt{length}. The \texttt{length} is a rubber length, that is, it may contain a \texttt{plus} or \texttt{minus} component, in any unit that \LaTeX{} understands (see Chapter 14 \texttt{[Lengths]}, page 69).

This command can add both positive and negative space; adding negative space is like backspacing.

Normally when \TeX{} breaks a paragraph into lines it discards white space (glues and kerns) that would come at the start of a line, so you get an inter-word space or a line break between words but not both. This command’s starred version \texttt{\hspace*{\ldots}} puts a non-discardable invisible item in front of the space, so the space appears in the output.

This example make a one-line paragraph that puts ‘Name:’ an inch from the right margin.
\noindent\makebox[\linewidth]{\hspace{\fill}Name:\hspace{1in}}

19.2 \texttt{\hfill}

Produce a rubber length which has no natural space but can stretch horizontally as far as needed (see Chapter 14 \texttt{[Lengths]}, page 69).

The command \texttt{\hfill} is equivalent to \texttt{\hspace{\fill}}. For space that does not disappear at line breaks use \texttt{\hspace*{\fill}} instead (see Section 19.1 \texttt{[\hspace]}, page 91).

19.3 \texttt{(SPACE)} and \texttt{\@}

Mark a punctuation character, typically a period, as either ending a sentence or as ending an abbreviation.

By default, in justifying a line \LaTeX{} adjusts the space after a sentence-ending period (or a question mark, exclamation point, comma, or colon) more than the space between words (see Section 19.5 \texttt{[frenchspacing]}, page 92). \LaTeX{} assumes that the period ends a sentence unless it is preceded by a capital letter, in which case it takes that period for part of an abbreviation. Note that if a sentence-ending period is immediately followed by a right parenthesis or bracket, or right single or double quote, then the intersentence space follows that parenthesis or quote.

If you have a period ending an abbreviation whose last letter is not a capital letter, and that abbreviation is not the last word in the sentence, then follow that period with a backslash-space (\texttt{\ }) or a tie (\texttt{~}). Examples are \texttt{Nat.\ Acad.\ Science}, and \texttt{Mr.~Bean}, and \texttt{(manure, etc.)\ for sale}.

For other use of \texttt{\ }, see also Section 19.4 \texttt{[)(SPACE) after CS]}, page 92.
In the opposite situation, if you have a capital letter followed by a period that ends the sentence, then put `\@` on the left of that period. For example, `book by the MAA\@.` will have intersentence spacing after the period.

In contrast, putting `\@` on the right of a period tells \TeX\ that the period does not end the sentence. In the example reserved words (if, then, etc.\@) are different, \TeX\ will put interword space after the closing parenthesis (note that `\@` is before the parenthesis).

19.4 `\` after a control sequence

The `\` command is often used after control sequences to keep them from gobbling the space that follows, as in `\TeX\` is a nice system. And, under normal circumstances `\tab` and `\newline` are equivalent to `\`. For other use of `\`, see also Section 19.3 [\(\text{(SPACE)}\) and `\@`], page 91.

Some people prefer to use `{}` for the same purpose, as in `\TeX{}` is a nice system. This has the advantage that you can always write it the same way, like `\TeX{}`, whether it is followed by a space or by a punctuation mark. Please compare:

- `\TeX\` is a nice system. `\TeX,` a nice system.
- `\TeX{}` is a nice system. `\TeX{},` a nice system.

When you define user commands (see Section 12.1 [\newcommand & \renewcommand], page 59) you can prevent the space gobbling after the command by using the package `xspace` and inserting `\xspace` at the end of the definition. For instance:

```latex
\documentclass{minimal}
\usepackage{xspace}
\newcommand*{\Loup}{Grand Cric\xspace}
\begin{document}
Que le \Loup me croque !
\end{document}
```

A quick hack to use `xspace` for existing command is as follows:

```latex
\documentclass{minimal}
\usepackage{xspace}
\newcommand*{\SansXspaceTeX}{}
\let\SansXspaceTeX\TeX
\renewcommand{\TeX}{\SansXspaceTeX\xspace}
\begin{document}
\TeX is a nice system.
\end{document}
```

19.5 `\frenchspacing`

This declaration (from Plain \TeX) causes \LaTeX\ to treat intersentence spacing in the same way as interword spacing.

In justifying the text in a line, some typographic traditions, including English, prefer to adjust the space between sentences (or after other punctuation marks) more than the space between words. Following this declaration, all spaces are instead treated equally.

Revert to the default behavior by declaring `\nonfrenchspacing`.
19.6 \texttt{\textbackslash thinspace: Insert 1/6 em}

\texttt{\textbackslash thinspace} produces an unbreakable and unstretchable space that is 1/6 of an em. This is the proper space to use between nested quotes, as in ’”.

19.7 \texttt{\textbackslash /: Insert italic correction}

The \texttt{\textbackslash /} command produces an italic correction. This is a small space defined by the font designer for a given character, to avoid the character colliding with whatever follows. The italic f character typically has a large italic correction value.

If the following character is a period or comma, it’s not necessary to insert an italic correction, since those punctuation symbols have a very small height. However, with semicolons or colons, as well as normal letters, it can help. Compare \texttt{f: f;} with \texttt{f: f;}.

When changing fonts with commands such as \texttt{\textit{italic text}} or \texttt{\textitshape italic text}, \LaTeX{} will automatically insert an italic correction if appropriate (see Section 4.1 [Font styles], page 9).

Despite the name, roman characters can also have an italic correction. Compare pdf\TeX{} with pdf\TeX{}.

There is no concept of italic correction in math mode; spacing is done in a different way.

19.8 \texttt{\textbackslash hrulefill \textbackslash dotfill}

Produce an infinite rubber length (see Chapter 14 [Lengths], page 69) filled with a horizontal rule (that is, a line) or with dots, instead of just white space.

When placed between blank lines this example creates a paragraph that is left and right justified, where the space in the middle is filled with evenly spaced dots.

\texttt{\noindent Jack Aubrey\dotfill Melbury Lodge}

To make the rule or dots go to the line’s end use \texttt{\null} at the start or end.

To change the rule’s thickness, copy the definition and adjust it, as with \texttt{\renewcommand{\hrulefill}{\leavevmode\leaders\hrule height 1pt\hfill\kern\z@}}, which changes the default thickness of 0.4 pt to 1 pt. Similarly, adjust the dot spacing as with \texttt{\renewcommand{\dotfill}{\leavevmode\cleaders\hb@xt@1.00em\hss .\hss }\hfill\kern\z@}}, which changes the default length of 0.33 em to 1.00 em.

19.9 \texttt{\textbackslash addvspace}

\texttt{\addvspace{\textit{length}}}

Add a vertical space of height \textit{length}, which is a rubber length (see Chapter 14 [Lengths], page 69). However, if vertical space has already been added to the same point in the output by a previous \texttt{\addvspace} command then this command will not add more space than what is needed to make the natural length of the total vertical space equal to \textit{length}.

Use this command to adjust the vertical space above or below an environment that starts a new paragraph. (For instance, a Theorem environment is defined to begin and end in \texttt{\addvspace{\ldots}} so that two consecutive Theorem’s are separated by one vertical space, not two.)
This command is fragile (see Section 12.9 [\protect], page 65).

The error ‘Something’s wrong--perhaps a missing \item’ means that you were not in vertical mode when you invoked this command; one way to change that is to precede this command with a \par command.

19.10 \bigskip \medskip \smallskip

These commands produce a given amount of space, specified by the document class.

\bigskip The same as \vspace{\bigskipamount}, ordinarily about one line space, with stretch and shrink (the default for the book and article classes is 12pt plus 4pt minus 4pt).

\medskip The same as \vspace{\medskipamount}, ordinarily about half of a line space, with stretch and shrink (the default for the book and article classes is 6pt plus 2pt minus 2pt).

\smallskip The same as \vspace{\smallskipamount}, ordinarily about a quarter of a line space, with stretch and shrink (the default for the book and article classes is 3pt plus 1pt minus 1pt).

19.11 \vfill

End the current paragraph and insert a vertical rubber length (see Chapter 14 [Lengths], page 69) that is infinite, so it can stretch or shrink as far as needed.

It is often used in the same way as \vspace{\fill}, except that \vfill ends the current paragraph, whereas \vspace{\fill} adds the infinite vertical space below its line irrespective of the paragraph structure. In both cases that space will disappear at a page boundary; to circumvent this see Section 19.12 [\vspace], page 94.

In this example the page is filled, so the top and bottom lines contain the text ‘Lost Dog!’ and the third ‘Lost Dog!’ is exactly halfway between them.

\begin{document}
Lost Dog!
\vfill
Lost Dog!
\vfill
Lost Dog!
\end{document}

19.12 \vspace{length}

Synopsis, one of these two:

\vspace{length}
\vspace*[length]

Add the vertical space length. This can be negative or positive, and is a rubber length (see Chapter 14 [Lengths], page 69).
LaTeX removes the vertical space from \texttt{\vfill} at a page break, that is, at the top or bottom of a page. The starred version \texttt{\vspace*{..}} causes the space to stay.

In this example the two questions will be evenly spaced vertically on the page, with at least one inch of space below each.

\begin{document}
1) Who put the bomp in the bomp bah bomp bah bomp?
\vspace{1in plus 1fill}

2) Who put the ram in the rama lama ding dong?
\vspace{1in plus 1fill}
\end{document}
Chapter 20: Boxes

All the predefined length parameters (see Section 14.7 [Predefined lengths], page 70) can be used in the arguments of the box-making commands.

20.1 \mbox{text}

The \mbox{text} command creates a box just wide enough to hold the text created by its argument. The text is not broken into lines, so it can be used to prevent hyphenation.

20.2 \fbox and \framebox

Synopses:

\fbox{text} \framebox[width][position]{text}

The \fbox and \framebox commands are like \mbox, except that they put a frame around the outside of the box being created.

In addition, the \framebox command allows for explicit specification of the box width with the optional width argument (a dimension), and positioning with the optional position argument.

Both commands produce a rule of thickness \fboxrule (default ‘.4pt’), and leave a space of \fboxsep (default ‘3pt’) between the rule and the contents of the box.

See Section 8.19.3 [\framebox (picture)], page 38, for the \framebox command in the picture environment.

20.3 lrbox

\begin{lrbox}{cmd} text \end{lrbox}

This is the environment form of \sbox.

The text inside the environment is saved in the box cmd, which must have been declared with \newsavebox.

20.4 \makebox

Synopsis:

\makebox[width][position]{text}

The \makebox command creates a box just wide enough to contain the text specified. The width of the box can be overridden by the optional width argument. The position of the text within the box is determined by the optional position argument, which may take the following values:

- c Centered (default).
- l Flush left.
- r Flush right.
- s Stretch (justify) across entire width; text must contain stretchable space for this to work.
\makebox is also used within the picture environment see Section 8.19.2 [\makebox (picture)], page 38.

20.5 \parbox

Synopsis:

\parbox[position][height][inner-pos]{width}{text}

The \parbox command produces a box whose contents are created in paragraph mode. It should be used to make a box small pieces of text, with nothing fancy inside. In particular, you shouldn’t use any paragraph-making environments inside a \parbox argument. For larger pieces of text, including ones containing a paragraph-making environment, you should use a minipage environment (see Section 8.18 [minipage], page 36).

\parbox has two mandatory arguments:

width the width of the parbox;

text the text that goes inside the parbox.

The optional position argument allows you to align either the top or bottom line in the parbox with the baseline of the surrounding text (default is top).

The optional height argument overrides the natural height of the box.

The inner-pos argument controls the placement of the text inside the box, as follows; if it is not specified, position is used.

t text is placed at the top of the box.

c text is centered in the box.

b text is placed at the bottom of the box.

s stretch vertically; the text must contain vertically stretchable space for this to work.

20.6 \raisebox

Synopsis:

\raisebox{distance}[height][depth]{text}

The \raisebox command raises or lowers text. The first mandatory argument specifies how high text is to be raised (or lowered if it is a negative amount). text itself is processed in LR mode.

The optional arguments height and depth are dimensions. If they are specified, \LaTeX treats text as extending a certain distance above the baseline (height) or below (depth), ignoring its natural height and depth.

20.7 \savebox

Synopsis:

\savebox{\boxcmd}[width][pos]{text}

This command typeset text in a box just as with \makebox (see Section 20.4 [\makebox], page 96), except that instead of printing the resulting box, it saves it in the box labeled
\texttt{\textbackslash boxcmd}, which must have been declared with \texttt{\textbackslash newsavebox} (see Section 12.5 \texttt{\textbackslash newsavebox}, page 61).

20.8 \texttt{\textbackslash sbox\{\textbackslash boxcmd\}\{text\}}

Synopsis:

\texttt{\textbackslash sbox\{\textbackslash boxcmd\}\{text\}}

\texttt{\textbackslash sbox} types \texttt{text} in a box just as with \texttt{\textbackslash mbox} (see Section 20.1 \texttt{\textbackslash mbox}, page 96) except that instead of the resulting box being included in the normal output, it is saved in the box labeled \texttt{\textbackslash boxcmd}. \texttt{\textbackslash boxcmd} must have been previously declared with \texttt{\textbackslash newsavebox} (see Section 12.5 \texttt{\textbackslash newsavebox}, page 61).

20.9 \texttt{\textbackslash usebox\{\textbackslash boxcmd\}}

Synopsis:

\texttt{\textbackslash usebox\{\textbackslash boxcmd\}}

\texttt{\textbackslash usebox} produces the box most recently saved in the bin \texttt{\textbackslash boxcmd} by a \texttt{\textbackslash savebox} command (see Section 20.7 \texttt{\textbackslash savebox}, page 97).
21 Special insertions

\LaTeX provides commands for inserting characters that have a special meaning do not correspond to simple characters you can type.

21.1 Reserved characters

The following characters play a special role in \LaTeX and are called “reserved characters” or “special characters”.

`# $ % & ~ _ ^ { }`

Whenever you write one of these characters into your file, \LaTeX will do something special. If you simply want the character to be printed as itself, include a \ in front of the character. For example, \$ will produce $ in your output.

One exception to this rule is \ itself, because \ has its own special (context-dependent) meaning. A roman \ is produced by typing \textbackslash in your file, and a typewriter \ is produced by using ‘\’ in a verbatim command (see Section 8.27 [verbatim], page 50).

Also, \ and \ place tilde and circumflex accents over the following letter, as in ô and ô (see Section 21.3 [Accents], page 102); to get a standalone “ or “, you can again use a verbatim command.

Finally, you can access any character of the current font once you know its number by using the \symbol command. For example, the visible space character used in the \verb* command has the code decimal 32, so it can be typed as \symbol{32}.

You can also specify octal numbers with ' or hexadecimal numbers with ”, so the previous example could also be written as \symbol{'40} or \symbol{"20}.

21.2 Text symbols

\LaTeX provides commands to generate a number of non-letter symbols in running text. Some of these, especially the more obscure ones, are not available in OT1; you may need to load the textcomp package.

\copyright
\textcopyright
The copyright symbol, ©.
\dag
The dagger symbol (in text).
\ddag
The double dagger symbol (in text).
\LaTeX
The \LaTeX logo.
\LaTeXe
The \LaTeX2e logo.
\guillemotleft («)
\guillemotright (»)
\guilsinglleft (‹)
\guilsingleright (›)
Double and single angle quotation marks, commonly used in French: «, », ‹, ›.
\ldots
\dots
\textellipsis
An ellipsis (three dots at the baseline): ‘…’. \ldots and \dots also work in math mode.
\lq
Left (opening) quote: ‘.
\P
\textparagraph
Paragraph sign (pilcrow).
\pounds
\textsterling
English pounds sterling: £.
\quotedblbase („)
\quotesinglebase („)
Double and single quotation marks on the baseline: „ and „.
\rq
Right (closing) quote: ’.
\S
Section symbol.
\TeX
The \TeX logo.
\textasciicircum
ASCII circumflex: ^.
\textasciitilde
ASCII tilde: ~.
\textasteriskcentered
Centered asterisk: *.
\textbackslash
Backslash: \.
\textbar
Vertical bar: |.
\textbardbl
Double vertical bar.
\textbigcircle
Big circle symbol.
\textbraceleft
Left brace: {.
\textbraceright
Right brace: }.n
\textbullet
Bullet: •.
\textcircled{letter}
letter in a circle, as in ®.
\textcompwordmark
\textcapitalwordmark
\textascenderwordmark
Composite word mark (invisible). The \textcapital... form has the cap
height of the font, while the \textascender... form has the ascender height.

\textdagger
Dagger: †.

\textdaggerdbl
Double dagger: ‡.

\textdollar (or $)
Dollar sign: $.

\textemdash (or ---)
Em-dash: — (for punctuation).

\textendash (or --)
En-dash: – (for ranges).

\texteuro
The Euro symbol: €.

\textexclamdown (or !‘)
Upside down exclamation point: ¡.

\textgreater
Greater than: >.

\textless
Less than: <.

\textleftarrow
Left arrow.

\textordfeminine
\textordmasculine
Feminine and masculine ordinal symbols: a, o.

\textperiodcentered
Centered period: ·.

\textquestiondown (or ?‘)
Upside down question mark: ¿.

\textquotedblleft (or ‘‘)
Double left quote: “.

\textquotedblright (or ’)
Double right quote: ”.

\textquoteleft (or ‘)
Single left quote: ‘.

\textquoteright (or ’)
Single right quote: ’.
\textquotestraightbase
\textquotestraightdblbase
Single and double straight quotes on the baseline.

\textregistered
Registered symbol: ®.

\textrightarrow
Right arrow.

\textthreequartersem dash
“Three-quarters” em-dash, between en-dash and em-dash.

\texttrademark
Trademark symbol: TM.

\texttwelveudash
“Two-thirds” em-dash, between en-dash and em-dash.

\textunderscore
Underscore: _.

\textvisiblespace
Visible space symbol.

\textbf{21.3 Accents}
\LATEX has wide support for many of the world’s scripts and languages, through the \texttt{ babel} package and related support. This section does not attempt to cover all that support. It merely lists the core \LATEX commands for creating accented characters.

The \texttt{\textbackslash capital...} commands produce alternative forms for use with capital letters. These are not available with OT1.

\textbackslash "
\textbackslash capitaldieresis
Produces an umlaut (dieresis), as in ö.

\textbackslash \\
\textbackslash capitalacute
Produces an acute accent, as in ó. In the \texttt{tabbing} environment, pushes current column to the right of the previous column (see Section 8.21 [tabbing], page 41).

\textbackslash .
\textbackslash =
\textbackslash capitalmacron
Produces a macron (overbar) accent over the following, as in ö.

\textbackslash ~
\textbackslash capitalcircumflex
Produces a circumflex (hat) accent over the following, as in ô.

\textbackslash \\
\textbackslash capitalgrave
Produces a grave accent over the following, as in ò. In the \texttt{tabbing} environment, move following text to the right margin (see Section 8.21 [tabbing], page 41).
\~
\texttt{\textbackslash capitaltilde}

Produces a tilde accent over the following, as in ķ.

\b
\texttt{\textbackslash b}

Produces a bar accent under the following, as in ọ. See also \texttt{\textbackslash underline} hereinafter.

\c
\texttt{\textbackslash capitalcedilla}

Produces a cedilla accent under the following, as in ç.

\d
\texttt{\textbackslash capitaldotaccent}

Produces a dot accent under the following, as in ọ.

\H
\texttt{\textbackslash capitalhungarumlaut}

Produces a long Hungarian umlaut accent over the following, as in ŏ.

\i
\texttt{\textbackslash i}

Produces a dotless i, as in ‘ı’.

\j
\texttt{\textbackslash j}

Produces a dotless j, as in ‘ȷ’.

\k
\texttt{\textbackslash capitalogonek}

Produces a letter with ogonek, as in ‘œ’. Not available in the OT1 encoding.

\r
\texttt{\textbackslash capitalring}

Produces a ring accent, as in ‘ö’.

\t
\texttt{\textbackslash capitaltie}

\texttt{\textbackslash newtie}

\texttt{\textbackslash capitalnewtie}

Produces a tie-after accent, as in ‘őő’. The \texttt{\textbackslash newtie} form is centered in its box.

\u
\texttt{\textbackslash capitalbreve}

Produces a breve accent, as in ‘ő’.

\underline
\texttt{\textbackslash underline}

Not exactly an accent, this produces a bar under the argument text. The argument is always processed in horizontal mode. The bar is always a fixed position under the baseline, thus crossing through descenders. See also \texttt{\textbackslash underline} in Section 16.6 [Math miscellany], page 86. See also \texttt{\textbackslash b} above.

\v
\texttt{\textbackslash capitalcaron}

Produces a háček (check, caron) accent, as in ‘ő’.
21.4 Non-English characters

Here are the basic \LaTeX commands for inserting characters commonly used in languages other than English.

\\ aa \quad â and Á.
\\ AA \quad Å and Ä.
\\ ae \quad æ and Æ.
\\ AE \quad æ and Æ.
\\ dh \quad Icelandic letter eth: ð and Ð.
\\ DH \quad Cd and C D, a.k.a. capital and small letter d with stroke.
\\ dj \quad Crossed d and D, a.k.a capital and small letter d with stroke.
\\ DJ \quad Ij and IJ (except somewhat closer together than appears here).
\\ i \quad I and I.
\\ l \quad l and L.
\\ ng \quad Latin letter eng, also used in phonetics.
\\ NG \quad Latin letter eng, also used in phonetics.
\\ o \quad ø and Ø.
\\ O \quad ø and Ø.
\\ oe \quad œ and Œ.
\\ OE \quad œ and Œ.
\\ ss \quad ß and SS.
\\ SS \quad ß and SS.
\\ th \quad Icelandic letter thorn: þ and Þ.
\\ TH \quad Icelandic letter thorn: þ and Þ.

21.6 \today

Synopsis:

\rule[raise]{width}{thickness}

The \rule command produces rules, that is, lines or rectangles. The arguments are:

raise \quad How high to raise the rule (optional).
width \quad The length of the rule (mandatory).
thickness \quad The thickness of the rule (mandatory).

21.6 \today

The \today command produces today’s date, in the format ‘month dd, yyyy’; for example, ‘July 4, 1976’. It uses the predefined counters \day, \month, and \year (see Section 13.8 \day \month \year, page 68) to do this. It is not updated as the program runs.

The datetime package, among others, can produce a wide variety of other date formats.
22 Splitting the input

A large document requires a lot of input. Rather than putting the whole input in a single large file, it's more efficient to split it into several smaller ones. Regardless of how many separate files you use, there is one that is the root file; it is the one whose name you type when you run \LaTeX.

See Section 8.11 [filecontents], page 32, for an environment that allows bundling an external file to be created with the main document.

22.1 \include

Synopsis:

\include{file}

If no \includeonly command is present, the \include command executes \clearpage to start a new page (see Section 10.2 [clearpage], page 54), then reads file, then does another \clearpage.

Given an \includeonly command, the \include actions are only run if file is listed as an argument to \includeonly. See the next section.

The \include command may not appear in the preamble or in a file read by another \include command.

22.2 \includeonly

Synopsis:

\includeonly{file1,file2,...}

The \includeonly command controls which files will be read by subsequent \include commands. The list of filenames is comma-separated. Each file must exactly match a filename specified in a \include command for the selection to be effective.

This command can only appear in the preamble.

22.3 \input

Synopsis:

\input{file}

The \input command causes the specified file to be read and processed, as if its contents had been inserted in the current file at that point.

If file does not end in `.tex` (e.g., `foo` or `foo.bar`), it is first tried with that extension (`foo.tex` or `foo.bar.tex`). If that is not found, the original file is tried (`foo` or `foo.bar`).
23 Front/back matter

23.1 Tables of contents

A table of contents is produced with the \tableofcontents command. You put the command right where you want the table of contents to go; \LaTeX{} does the rest for you. A previous run must have generated a .toc file.

The \tableofcontents command produces a heading, but it does not automatically start a new page. If you want a new page after the table of contents, write a \newpage command after the \tableofcontents command.

The analogous commands \listoffigures and \listoftables produce a list of figures and a list of tables (from .lof and .lot files), respectively. Everything works exactly the same as for the table of contents.

The command \nofiles overrides these commands, and prevents any of these lists from being generated.

23.1.1 \addcontentsline

The \addcontentsline{ext}{unit}{text} command adds an entry to the specified list or table where:

- **ext**: The extension of the file on which information is to be written, typically one of: toc (table of contents), lof (list of figures), or lot (list of tables).
- **unit**: The name of the sectional unit being added, typically one of the following, matching the value of the ext argument:
 - toc: The name of the sectional unit: part, chapter, section, subsection, subsubsection.
 - lof: For the list of figures.
 - lot: For the list of tables.
- **entry**: The text of the entry.

What is written to the .ext file is the command \contentsline{unit}{name}.

23.1.2 \addtocontents

The \addtocontents{ext}{text} command adds text (or formatting commands) directly to the .ext file that generates the table of contents or lists of figures or tables.

- **ext**: The extension of the file on which information is to be written, typically one of: toc (table of contents), lof (list of figures), or lot (list of tables).
- **text**: The text to be written.
23.2 Glossaries
The command \makeglossary enables creating glossaries.

The command \glossary{text} writes a glossary entry for text to an auxiliary file with the .glo extension.

Specifically, what gets written is the command \glossaryentry{text}{pageno}, where page no is the current \thepage value.

The glossary package on CTAN provides support for fancier glossaries.

23.3 Indexes
The command \makeindex enables creating indexes. Put this in the preamble.

The command \index{text} writes an index entry for text to an auxiliary file with the .idx extension.

Specifically, what gets written is the command \indexentry{text}{pageno}, where page no is the current \thepage value.

To generate an index entry for ‘bar’ that says ‘See foo’, use a vertical bar: \index{bar|see{foo}}. Use seealso instead of see to make a ‘See also’ entry.

The text ‘See’ is defined by the macro \seename, and ‘See also’ by the macro \alsoname. These can be redefined for other languages.

The generated .idx file is then sorted with an external command, usually either makeindex (http://mirror.ctan.org/indexing/makeindex) or (the multi-lingual) xindy (http://xindy.sourceforge.net). This results in a .ind file, which can then be read to typeset the index.

The index is usually generated with the \printindex command. This is defined in the makeidx package, so \usepackage{makeidx} needs to be in the preamble.

The rubber length \indexspace is inserted before each new letter in the printed index; its default value is ‘10pt plus5pt minus3pt’.

The showidx package causes each index entries to be shown in the margin on the page where the entry appears. This can help in preparing the index.

The multind package supports multiple indexes. See also the \TeX FAQ entry on this topic, http://www.tex.ac.uk/cgi-bin/texfaq2html?label=multind.
24 Letters

Synopsis:

\documentclass{letter}
\address{sender address}
\signature{sender name}
\begin{document}
\begin{letter}{recipient address}
\opening{salutation}
\letter body
\closing{closing text}
\end{letter}
... more letters ...
\end{document}

Produce one or more letters.

Each letter is in a separate \texttt{letter} environment, whose argument \texttt{recipient address} often contains multiple lines separated with a double backslash (\\). For example, you might have:

\begin{letter}{Mr. Joe Smith \\
2345 Princess St. \\
Edinburgh, EH1 1AA}
...
\end{letter}

The start of the \texttt{letter} environment resets the page number to 1, and the footnote number to 1 also.

The \texttt{sender address} and \texttt{sender name} are common to all of the letters, whether there is one or more, so these are best put in the preamble. As with the recipient address, often \texttt{sender address} contains multiple lines separated by a double backslash (\\). \LaTeX{} will put the \texttt{sender name} under the closing, after a vertical space for the traditional hand-written signature; it also can contain multiple lines.

Each letter environment begins with a required \texttt{opening} command such as \texttt{opening{Dear Madam or Sir:}}. The \texttt{letter body} text is ordinary \LaTeX{} so it can contain everything from from enumerated lists to displayed math, except that commands such as \texttt{chapter} that make no sense in a letter are turned off. Each letter environment typically ends with a \texttt{closing} command such as \texttt{closing{Yours,}}.

Additional material may come after the \texttt{closing}. You can say who is receiving a copy of the letter with a \texttt{cc} command like \texttt{cc{the Boss \ the Boss’s Boss}}. There’s a similar \texttt{encl} command for a list of enclosures. And, you can add a postscript with \texttt{ps}.

\LaTeX{}’s default is to indent the signature and the \texttt{closing} above it by a length of \texttt{longindentation}. By default this is 0.5\textwidth. To make them flush left, put \texttt{setlength{\longindentation}{0em}} in your preamble.

To set a fixed date use something like \texttt{renewcommand{\today}{2015-Oct-12}}. If put in your preamble then it will apply to all the letters.

This example shows only one \texttt{letter} environment. The three lines marked as optional are typically omitted.
Chapter 24: Letters

\documentclass{letter}
\address{Sender’s street \ \ Sender’s town}
\signature{Sender’s name \ \ Sender’s title}
% optional: \location{Mailbox 13}
% optional: \telephone{(102) 555-0101}
\begin{document}
\begin{letter}{Recipient’s name \ \ Recipient’s address}
\opening{Sir:}
% optional: \thispagestyle{firstpage}
\begin{document}
I am not interested in entering a business arrangement with you.
\closing{Your most humble, etc.,}
\end{letter}
\end{document}

These commands are used with the letter class.

\subsection{address}

Synopsis:

\address{senders address}

Specifies the return address as it appears on the letter and on the envelope. Separate multiple lines in senders address with a double backslash \.

Because it can apply to multiple letters this declaration is often put in the preamble. However, it can go anywhere, including inside an individual letter environment.

This command is optional: without the address declaration the letter is formatted with some blank space on top, for copying onto pre-printed letterhead paper. (See Chapter 2 [Overview], page 3, for details on your local implementation.) With the address declaration, it is formatted as a personal letter.

Here is an example.

\address{Stephen Maturin \ \ The Grapes of the Savoy}

\subsection{cc}

Synopsis:

\cc{first name \ \ .. }

Produce a list of names to which copies of the letter were sent. This command is optional. If it appears then typically it comes after closing. Separate multiple lines with a double backslash \.

\cc{President \ \ Vice President}

\subsection{closing}

Synopsis:
\closin{\text}

Usually at the end of a letter, above the handwritten signature, there is a `\closin` (although this command is optional). For example,

\closin{Regards,}

24.4 \encl

Synopsis:

\encl{first enclosed object \ \ \\
.. }

Produce a list of things included with the letter. This command is optional; when it is used, it typically is put after `\closin`. Separate multiple lines with a double backslash `\`.

\encl{License \ \ \\
Passport }

24.5 \location

Synopsis:

\location{text}

The `text` appears centered at the bottom of the each page. It only appears if the page style is `firstpage`.

24.6 \makelabels

Synopsis:

\makelabels

Create a sheet of address labels from the recipient addresses, one for each letter. This sheet will be output before the letters, with the idea that you can copy it to a sheet of peel-off labels. This command goes in the preamble.

Customize the labels by redefining the commands `\startlabels`, `\mlabel`, and `\returnaddress` in the preamble. The command `\startlabels` sets the width, height, number of columns, etc., of the page onto which the labels are printed. The command `\mlabel{sender address}{recipient address}` produces the two labels (or one, if you choose to ignore the `sender address`). The `sender address` is the value returned by the macro `\returnaddress` while `recipient address` is the value passed in the argument to the `letter` environment. By default `\mlabel` ignores the first argument, the `sender address`.

24.7 \name

Synopsis:

\name{name}

Sender's name, used for printing on the envelope together with the return address.
24.8 \opening

Synopsis:
\opening{text}

This command is required. It starts a letter, following the \begin{letter}{..}. The mandatory argument text is the text that starts your letter. For instance:
\opening{Dear John:}

24.9 \ps

Synopsis:
\ps{text}

Add a postscript. This command is optional and usually is used after \closing.
\ps{P.S. After you have read this letter, burn it. Or eat it.}

24.10 \signature

Synopsis:
\signature{first line \\ .. }

The sender's name. This command is optional, although its inclusion is usual.
The argument text appears at the end of the letter, after the closing and after a vertical space for the traditional hand-written signature. Separate multiple lines with a double backslash \. For example:
\signature{J Fred Muggs \\ White House}

\LaTeX's default for the vertical space from the \closing text down to the \signature text is 6\medskipamount, which is six times 0.7 em.

This command is usually in the preamble, to apply to all the letters in the document. To have it apply to one letter only, put it inside a letter environment and before the \closing.

You can include a graphic in the signature, for instance with \signature{\vspace{-6\medskipamount}\includegraphics{sig.png}\ My name} (this requires writing \usepackage{graphicx} in the preamble).

24.11 \telephone

Synopsis:
\telephone{number}

The sender's telephone number. This is typically in the preamble, where it applies to all letters. This only appears if the firstpage pagemode is selected. If so, it appears on the lower right of the page.
25 Terminal input/output

25.1 `\typein[cmd]{msg}`

Synopsis:

```
\typein[\cmd]{msg}
```

`\typein` prints `msg` on the terminal and causes \TeX{} to stop and wait for you to type a line of input, ending with return. If the optional `\cmd` argument is omitted, the typed input is processed as if it had been included in the input file in place of the `\typein` command. If the `\cmd` argument is present, it must be a command name. This command name is then defined or redefined to be the typed input.

25.2 `\typeout{msg}`

Synopsis:

```
\typeout{msg}
```

Prints `msg` on the terminal and in the log file. Commands in `msg` that are defined with `\newcommand` or `\renewcommand` (among others) are replaced by their definitions before being printed.

\TeX{}'s usual rules for treating multiple spaces as a single space and ignoring spaces after a command name apply to `msg`. A `\space` command in `msg` causes a single space to be printed, independent of surrounding spaces. A `\^J` in `msg` prints a newline.
Chapter 26: Command line

26 Command line

The input file specification indicates the file to be formatted; \TeX uses .tex as a default file extension. If you omit the input file entirely, \TeX accepts input from the terminal. You can also specify arbitrary \LaTeX input by starting with a backslash. For example, this processes \texttt{foo.tex} without pausing after every error:

```
latex \texttt{\nonstopmode\input foo.tex}
```

With many, but not all, implementations, command-line options can also be specified in the usual Unix way, starting with ‘-’ or ‘--’. For a list of those options, try `latex --help`. If \LaTeX stops in the middle of the document and gives you a ‘*’ prompt, it is waiting for input. You can type `\texttt{\textbackslash stop}` (and return) and it will prematurely end the document.

See Section 2.3 [\TeX engines], page 4, for other system commands invoking \LaTeX.
Appendix A Document templates

Although not reference material, perhaps these document templates will be useful. Additional template resources are listed at http://tug.org/interest.html#latextemplates.

A.1 beamer template

The beamer class creates presentation slides. It has a vast array of features, but here is a basic template:

\documentclass{beamer}
\title{Beamer Class template}
\author{Alex Author}
\date{July 31, 2007}
\begin{document}
\maketitle
\begin{frame}[fragile]
\frametitle{First Slide}
\begin{verbatim}
This is \verb!
\end{verbatim}
\end{frame}
\end{document}

One web resource for this: http://robjhyndman.com/hyndsight/beamer/.

A.2 book template

\documentclass{book}
\title{Book Class Template}
\author{Alex Author}
\begin{document}
\maketitle
\chapter{First}
Some text.
\chapter{Second}
Some other text.
\section{A subtopic}
The end.
\end{document}

A.3 tugboat template

\textit{TUGboat} is the journal of the \TeX\ Users Group, http://tug.org/TUGboat.
\begin{verbatim}
\documentclass{ltugboat}
\usepackage{graphicx}
\usepackage{ifpdf}
\ifpdf
\usepackage[breaklinks,hidelinks]{hyperref}
\else
\usepackage[url]{url}
\fi
\title{Example \TUB\ article}
\% repeat info for each author.
\author{First Last}
\address{Street Address \ Town, Postal \ Country}
\netaddress{user (at) example dot org}
\personalURL{http://example.org/~user/}
\begin{document}
\maketitle
\begin{abstract}
This is an example article for \TUB{}.
\end{abstract}
\section{Introduction}
This is an example article for \TUB, from
\url{http://tug.org/TUGboat/location.html}.

We recommend the \texttt{graphicx} package for image inclusions, and the
\texttt{hyperref} package for active urls in the \acro{PDF} output.
Nowadays \TUB\ is produced using \acro{PDF} files exclusively.

The \texttt{ltugboat} class provides these abbreviations and many more:
\begin{verbatim}
\AllTeX \AMS \AmS \AmSLaTeX \AmSTeX \aw \AW
\BibTeX \CTAN \DTD \HTML
\end{verbatim}
\end{verbatim}
\ISBN \ISSN \LaTeXe
\Mc \mf \MFB \mtext \PCTeX \pcTeX
\PiC \PiCTeX \plain \POBox \PS
\SC \SGML \SliTeX \TANGLE \TB \TP
\TUB \TUG \tug
\UG \UNIX \VAX \XeT \WEB \WEAVE

\Dash \dash \vellipsis \bull \cents \Dag
\careof \thinspace

\acro{FRED} -> {\small[er] fred} % please use!
\cs{fred} -> \fred
\env{fred} -> \begin{fred}
\meta{fred} -> <fred>
\nth{n} -> 1st, 2nd, ...
\sfrac{3/4} -> 3/4
\booktitle{Book of Fred}
\end{verbatim}

For more information, see the ltubguid document at:
\url{http://mirror.ctan.org/macros/latex/contrib/tugboat}
(we recommend using \verb|mirror.ctan.org| for \CTAN\ references).

Email \verb|tugboat@tug.org| if problems or questions.

\bibliographystyle{plain} % we recommend the plain bibliography style
\nocite{book-minimal} % just making the bibliography non-empty
\bibliography{xampl} % xampl.bib comes with BibTeX

\makesignature
\end{document}
Concept Index

*

- '!' prompt ... 113
- *-form of sectioning commands 22

.

- .glo file .. 107
- .idx file ... 107
- .ind file ... 107

- 'see' and 'see also' index entries 107

A

- abstracts ... 25
- accents .. 102
- accents, mathematical 85
- accessing any character of a font 99
- acute accent ... 102
- acute accent, mathematical 85
- additional packages, loading 8
- ae ligature ... 104
- align environment, from amsmath 30
- aligning equations 30
- alignment via tabbing 41
- amsmath package, replacing eqnarray 30
- appendix, creating 22
- aring ... 104
- arrays, math .. 104
- arrow, left, in text 101
- arrow, right, in text 102
- ascender height 101
- ASCII circumflex, in text 100
- ASCII tilde, in text 100
- asterisk, centered, in text 100
- at clause, in font definitions 64
- author, for titlepage 89
- auxiliary file .. 4

B

- babel package .. 102
- backslash, in text 100
- bar, double vertical, in text 100
- bar, vertical, in text 100
- bar-over accent 102
- bar-over accent, math 85
- bar-under accent 103
- basics of \LaTeX 3
- beamer template and class 114
- beginning of document hook 28
- bibliography format, open 8
- bibliography, creating (automatically) 49
- bibliography, creating (manually) 48
- \texttt{bib} and \texttt{bibtex}, using 49
- big circle symbols, in text 100
- big point ... 69
- black boxes, omitting 8
- bold font .. 10
- bold math ... 10
- bold typewriter, avoiding 27
- box, allocating new 61
- boxes .. 96
- brace, left, in text 100
- brace, right, in text 100
- breaking lines 52
- breaking pages 54
- breve accent ... 103
- breve accent, math 85
- bug reporting .. 2
- bullet symbol .. 75
- bullet, in text .. 100
- bulleted lists .. 33

C

- calligraphic letters for math 10
- cap height .. 101
- caron accent .. 103
- cc list, in letters 109
- cedilla accent 103
- centered asterisk, in text 100
- centered equations 8
- centered period, in text 101
- centering text, declaration for 26
- centering text, environment for 26
- Centimeter ... 69
- characters, accented 102
- characters, non-English 104
- characters, reserved 99
- check accent ... 103
- check accent, math 85
- Cicero .. 69
- circle symbol, big, in text 100
- circled letter, in text 100
- circumflex accent 102
- circumflex accent, math 102
- circumflex, ASCII, in text 100
- class options ... 7
- classes of documents 7
- closing letters 109
- closing quote .. 100
- code, typesetting 50
- command line ... 113
- command syntax 5
- commands, defining new ones 59, 60
lining text up using tab stops 41
list items, specifying counter 66
list of figures file .. 4
list of tables file .. 4
lists of items ... 33
lists of items, generic ... 35
lists of items, numbered .. 29
loading additional packages ... 8
log file .. 4
logo, \LaTeX .. 99
logo, \LaTeX{}X ... 99
logo, \TeX ... 100
low-9 quotation marks, single and double 100
low-level font commands ... 11
LR mode ... 88
\texttt{ltugboat} class .. 115
\texttt{Lua\TeX} .. 4
\texttt{M}

m-width ... 69
macro package, \LaTeX as .. 3
macron accent .. 102
macron accent, math .. 85
Madsen, Lars ... 30
\texttt{makeidx} package ... 107
\texttt{makeindex} program .. 107
making a title page ... 50
making paragraphs .. 71
marginal notes .. 71
masculine ordinal symbol ... 101
math accents .. 85
math formulas .. 73
math functions ... 84
math miscellany .. 86
math mode ... 88
math mode, entering ... 73
math mode, spacing ... 86
math symbols .. 74
math, bold ... 10
Millimeter ... 69
minipage, creating a .. 36
modes ... 88
monospace font .. 10
moving arguments ... 65
\texttt{mpfootnote} counter ... 55
\texttt{mu}, math unit .. 69
multicolumn text .. 15
multilingual support ... 102
\texttt{multind} package ... 107
multiplication symbol, discretionary line break 86
\texttt{N}

nested \texttt{\\include}, not allowed 105
new commands, defining ... 59, 60
new line, output as input ... 52
new line, starting ... 52
new line, starting (paragraph mode) 52
new page, starting ... 54
non-English characters ... 104
notes in the margin ... 71
null delimiter .. 86
numbered items, specifying counter 66
numerals, old-style .. 10
\texttt{O}

oblique font ... 10
oe ligature ... 104
ogonek ... 103
old-style numerals .. 10
one-column output .. 15
opening quote .. 100
OpenType fonts .. 4
options, document class .. 7
options, global .. 8
ordinals, feminine and masculine 101
oslash ... 104
overbar accent .. 102
overdot accent, math .. 85
overview of \LaTeX ... 3
\texttt{P}

packages, loading additional .. 8
page break, forcing ... 54
page break, preventing ... 54
page breaking .. 54
page layout parameters .. 17
page number, cross referencing 23
page numbering style .. 89
page styles ... 89
paragraph indentation, in minipage 36
paragraph indentations in quoted text 40
paragraph indentations in quoted text, omitting 40
paragraph mode ... 88
paragraph symbol ... 100
paragraphs ... 71
parameters, for footnotes .. 58
parameters, page layout .. 17
\texttt{pdf\LaTeX} ... 4
\texttt{pdf\LaTeX} engine .. 4
period, centered, in text .. 101
pica ... 69
\texttt{picture} package ... 39
pictures, creating ... 37
pilcrow ... 100
placement of floats .. 20
poetry, an environment for 50
Point ... 69
polish l ... 104
portrait orientation .. 8
position, in picture ... 37
<table>
<thead>
<tr>
<th>Concept Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>postscript, in letters</td>
</tr>
<tr>
<td>pounds symbol</td>
</tr>
<tr>
<td>preamble, defined</td>
</tr>
<tr>
<td>predefined lengths</td>
</tr>
<tr>
<td>prompt, *</td>
</tr>
<tr>
<td>pronunciation</td>
</tr>
</tbody>
</table>

Q
- quad | 86 |
- question mark, upside-down | 101 |
- quotation marks, French | 99 |
- quote, straight base | 102 |
- quoted text with paragraph indentation, displaying | 40 |
- quoted text without paragraph indentation, displaying | 40 |

R
- ragged left text | 33 |
- ragged left text, environment for | 33 |
- ragged right text | 33 |
- ragged right text, environment for | 61 |
- references, resolving forward | 4 |
- registered symbol | 102 |
- remarks in the margin | 71 |
- reporting bugs | 2 |
- reserved characters | 99 |
- right angle quotation marks | 99 |
- right arrow, in text | 102 |
- right brace, in text | 100 |
- right quote | 100 |
- right quote, double | 101 |
- right quote, single | 101 |
- right-hand equation numbers | 8 |
- right-justifying text | 33 |
- right-justifying text, environment for | 33 |
- ring accent | 103 |
- ring accent, math | 85 |
- robust commands | 65 |
- roman font | 10 |
- rubber lengths, defining new | 60 |
- running header and footer | 17 |
- running header and footer style | 89 |

S
- sans serif font | 10 |
- Scaled point | 69 |
- script letters for math | 10 |
- section number, cross referencing | 24 |
- section numbers, printing | 22 |
- section symbol | 100 |
- sectioning commands | 22 |
- series, of fonts | 12 |
- `setspace` package | 13 |
- setting counters | 67 |
- shapes, of fonts | 13 |
- sharp S letters | 104 |
- `showidx` package | 107 |
- simulating typed text | 50 |
- single angle quotation marks | 99 |
- single guillemets | 99 |
- single left quote | 101 |
- single low-9 quotation mark | 100 |
- single right quote | 101 |
- sizes of text | 11 |
- skip register, plain TeX | 60 |
- slanted font | 10 |
- small caps font | 10 |
- space, inserting vertical | 93 |
- space, vertical | 94 |
- spaces | 91 |
- spacing within math mode | 86 |
- spacing, intersentence | 92 |
- Spanish ordinals, feminine and masculine | 101 |
- special characters | 104 |
- special insertions | 99 |
- specifier, float placement | 20 |
- splitting the input file | 105 |
- starting a new page | 54 |
- starting a new page and clearing floats | 54 |
- starting and ending | 3 |
- starting on a right-hand page | 54 |
- sterling symbol | 100 |
- straight double quote, base | 102 |
- straight quote, base | 102 |
- stretch, infinite horizontal | 91 |
- stretch, infinite vertical | 94 |
- stretch, omitting vertical | 17 |
- styles of text | 9 |
- styles, page | 89 |
- subscript | 73 |
- superscript | 73 |
- symbols, math | 74 |
- symbols, text | 99 |

T
- tab stops, using | 41 |
- table of contents entry, manually adding | 106 |
- table of contents file | 4 |
- table of contents, creating | 106 |
- tables, creating | 42 |
- template, `beamer` | 114 |
- template, `book` | 114 |
- template, TUGboat | 115 |
- templates, document | 114 |
- terminal input/output | 112 |
- TeX logo | 100 |
- text symbols | 99 |
- `textcomp` package | 10 |
- thanks, for titlepage | 89 |
- theorem-like environment | 62 |
theorems, defining 62
theorems, typesetting 49
thorn, Icelandic letter 104
three-quarters em-dash 102
tie-after accent 103
tilde accent, math 85
tilde, ASCII, in text 100
title page, separate or run-in 8
title pages, creating 50
title, for titlepage 89
titles, making 89
trademark symbol 102
transcript file 4
TrueType fonts 4
TUGboat template 115
two-column output 15
two-thirds em-dash 102
type styles ... 9
typed text, simulating 50
typeface sizes 11
typefaces .. 9
typewriter font 10
typewriter labels in lists 27

U
umlaut accent 102
underbar ... 103
underscore, in text 102
Unicode input, native 4
units, of length 69
unofficial nature of this manual 2
unordered lists 33
using BibTeX 49
UTF-8 ... 4

V
variables, a list of 66
vector symbol, math 86
verbatim text 50
verbatim text, inline 50
vertical bar, double, in text 100
vertical bar, in text 100
vertical space 93, 94
vertical space before paragraphs 71
visible space 50
visible space symbol, in text 102

W
weights, of fonts 12
white space .. 91
wide hat accent, math 86
wide tilde accent, math 86
widths, of fonts 12
writing external files 32
writing letters 108

X
x-height .. 69
Xe\TeX ... 69
xindy program 107
Command Index

<table>
<thead>
<tr>
<th>Character</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>73</td>
</tr>
<tr>
<td>\</td>
<td>64</td>
</tr>
<tr>
<td>\</td>
<td>4</td>
</tr>
<tr>
<td>.</td>
<td>113</td>
</tr>
<tr>
<td>.</td>
<td>5</td>
</tr>
<tr>
<td>\</td>
<td>86</td>
</tr>
<tr>
<td>\</td>
<td>99</td>
</tr>
<tr>
<td>\</td>
<td>99</td>
</tr>
<tr>
<td>\</td>
<td>74</td>
</tr>
<tr>
<td>\</td>
<td>30</td>
</tr>
<tr>
<td>\</td>
<td>41</td>
</tr>
<tr>
<td>\</td>
<td>30</td>
</tr>
<tr>
<td>\</td>
<td>41</td>
</tr>
<tr>
<td>\</td>
<td>89</td>
</tr>
<tr>
<td>\</td>
<td>106</td>
</tr>
<tr>
<td>\</td>
<td>109</td>
</tr>
<tr>
<td>\</td>
<td>106</td>
</tr>
<tr>
<td>\</td>
<td>70</td>
</tr>
<tr>
<td>\</td>
<td>91</td>
</tr>
<tr>
<td>\</td>
<td>102</td>
</tr>
<tr>
<td>\</td>
<td>102</td>
</tr>
<tr>
<td>\</td>
<td>41</td>
</tr>
<tr>
<td>\</td>
<td>41</td>
</tr>
<tr>
<td>\</td>
<td>41</td>
</tr>
<tr>
<td>\</td>
<td>41</td>
</tr>
<tr>
<td>\</td>
<td>55</td>
</tr>
<tr>
<td>\</td>
<td>73</td>
</tr>
<tr>
<td>\</td>
<td>73</td>
</tr>
<tr>
<td>\</td>
<td>99</td>
</tr>
<tr>
<td>\</td>
<td>102</td>
</tr>
<tr>
<td>\</td>
<td>102</td>
</tr>
<tr>
<td>\</td>
<td>40</td>
</tr>
<tr>
<td>\</td>
<td>26</td>
</tr>
<tr>
<td>\</td>
<td>30</td>
</tr>
<tr>
<td>\</td>
<td>33</td>
</tr>
<tr>
<td>\</td>
<td>41</td>
</tr>
<tr>
<td>\</td>
<td>80</td>
</tr>
<tr>
<td>\</td>
<td>33</td>
</tr>
<tr>
<td>\</td>
<td>108</td>
</tr>
<tr>
<td>\</td>
<td>51</td>
</tr>
<tr>
<td>\</td>
<td>52</td>
</tr>
<tr>
<td>\</td>
<td>30</td>
</tr>
<tr>
<td>\</td>
<td>74</td>
</tr>
<tr>
<td>\</td>
<td>99</td>
</tr>
<tr>
<td>\</td>
<td>99</td>
</tr>
<tr>
<td>\</td>
<td>99</td>
</tr>
<tr>
<td>\</td>
<td>103</td>
</tr>
<tr>
<td>\</td>
<td>42</td>
</tr>
<tr>
<td>\</td>
<td>42</td>
</tr>
<tr>
<td>\</td>
<td>42</td>
</tr>
<tr>
<td>\</td>
<td>104</td>
</tr>
<tr>
<td>\</td>
<td>104</td>
</tr>
<tr>
<td>\</td>
<td>104</td>
</tr>
<tr>
<td>\</td>
<td>74</td>
</tr>
<tr>
<td>\</td>
<td>66</td>
</tr>
<tr>
<td>\</td>
<td>66</td>
</tr>
<tr>
<td>\</td>
<td>106</td>
</tr>
<tr>
<td>\</td>
<td>106</td>
</tr>
<tr>
<td>\</td>
<td>70</td>
</tr>
<tr>
<td>\</td>
<td>93</td>
</tr>
<tr>
<td>\</td>
<td>104</td>
</tr>
<tr>
<td>\</td>
<td>104</td>
</tr>
<tr>
<td>\</td>
<td>67</td>
</tr>
<tr>
<td>\</td>
<td>66</td>
</tr>
<tr>
<td>\</td>
<td>66</td>
</tr>
</tbody>
</table>
\textbf{Command Index}\hspace{8cm}124

\begin{itemize}
\item \texttt{	extbackslash Alph example} \hspace{1cm} 29 \item \texttt{	extbackslash alpha} \hspace{1cm} 74 \item \texttt{	extbackslash algoname} \hspace{1cm} 107 \item \texttt{	extbackslash amalg} \hspace{1cm} 74 \item \texttt{	extbackslash and for \textbackslash author} \hspace{1cm} 89 \item \texttt{	extbackslash angle} \hspace{1cm} 74 \item \texttt{	extbackslash appendix} \hspace{1cm} 22 \item \texttt{	extbackslash approx} \hspace{1cm} 74 \item \texttt{	extbackslash arabic} \hspace{1cm} 66 \item \texttt{	extbackslash arccos} \hspace{1cm} 84 \item \texttt{	extbackslash arccot} \hspace{1cm} 84 \item \texttt{	extbackslash arg} \hspace{1cm} 84 \item \texttt{	extbackslash arraycolsep} \hspace{1cm} 25 \item \texttt{	extbackslash arrayrulewidth} \hspace{1cm} 45 \item \texttt{	extbackslash arraystretch} \hspace{1cm} 45 \item \texttt{	extbackslash ast} \hspace{1cm} 74 \item \texttt{	extbackslash asymptote} \hspace{1cm} 74 \item \texttt{	extbackslash begin{AtBeginDocument}} \hspace{1cm} 28 \item \texttt{	extbackslash AtEndDocument} \hspace{1cm} 28 \item \texttt{	extbackslash appendix} \hspace{1cm} 22 \item \texttt{	extbackslash author\{name \{and name\}\}} \hspace{1cm} 89 \item \texttt{\author{}} \hspace{1cm} 103 \item \texttt{\backslash slash} \hspace{1cm} 74, 99 \item \texttt{\backslash bar} \hspace{1cm} 85 \item \texttt{\backslash baselineskip} \hspace{1cm} 13 \item \texttt{\backslash baselinestretch} \hspace{1cm} 13 \item \texttt{\backslash begin} \hspace{1cm} 25 \item \texttt{\backslash beta} \hspace{1cm} 74 \item \texttt{\backslash bf} \hspace{1cm} 10 \item \texttt{\backslash bseries} \hspace{1cm} 9 \item \texttt{\backslash bibitem} \hspace{1cm} 48 \item \texttt{\backslash bibliography} \hspace{1cm} 49 \item \texttt{\backslash bibliographystyle} \hspace{1cm} 49 \item \texttt{\bigcap} \hspace{1cm} 74 \item \texttt{\bigcirc} \hspace{1cm} 74 \item \texttt{\bigcup} \hspace{1cm} 74 \item \texttt{\bigdot} \hspace{1cm} 74 \item \texttt{\bigoplus} \hspace{1cm} 74 \item \texttt{\bigotimes} \hspace{1cm} 74 \item \texttt{\bigskip} \hspace{1cm} 94 \item \texttt{\bigskipamount} \hspace{1cm} 94 \item \texttt{\bigtimes} \hspace{1cm} 74 \item \texttt{\biguplus} \hspace{1cm} 75 \item \texttt{\bigvee} \hspace{1cm} 75 \item \texttt{\bigwedge} \hspace{1cm} 75 \item \texttt{\bmod} \hspace{1cm} 84 \item \texttt{\boldmath} \hspace{1cm} 73 \item \texttt{\bot} \hspace{1cm} 75 \item \texttt{\bottomfraction} \hspace{1cm} 20 \item \texttt{\bowtie} \hspace{1cm} 75 \item \texttt{\Box} \hspace{1cm} 75 \item \texttt{\breve} \hspace{1cm} 85 \item \texttt{\bullet} \hspace{1cm} 75 \item \texttt{\c} \hspace{1cm} 103 \item \texttt{\cal} \hspace{1cm} 10 \item \texttt{\cap} \hspace{1cm} 75
\end{itemize}
\ddagger .. 75 \footnote .. 55
\dagger .. 74 \footnotemark ... 56
\ddot .. 74 \footnoterule ... 58
\dot .. 74 \footnotesep .. 58
\dddot .. 74 \footnotesize ... 11
\ddots .. 74 \footnotetext ... 56
\det .. 74 \footnoteskip ... 17
\dddot .. 74 \forall .. 76
\de (A) .. 104 \frac ... 86
\De (B) .. 104 \frac{num}{den} .. 86
\diamond .. 75 \frame .. 38
\diamondsuit ... 75 \framebox ... 38, 96
\dia .. 75 \frenchspacing ... 92
\div .. 76 \fron .. 76
\divstyle .. 73 \fussy .. 93
\div .. 76 \gamma .. 76
\DJ .. 104 \Gamma .. 76
\doclass ... 7 \gcd .. 84
\dotfill ... 93 \ge ... 74
\dots .. 100 \geq .. 74
\doublerrulesep 45 \gdot .. 74
\downarrow .. 76 \gguide .. 85
\downarrow .. 76 \guillemotleft («) 99
\e (A) .. 76 \guillemotright (») 99
\emptyset ... 76 \guilsingleleft (¿) 99
\encl .. 110 \guilsingleright (¿) 99
\end .. 25 \Hat .. 85
\enlarge thispage 54 \hbar .. 76
\enum .. 29 \headheight ... 17
\enumi .. 29 \headsep .. 17
\enumb .. 29 \headers ... 76
\enump .. 29 \headtitle ... 76
\eps .. 76 \height ... 70
\epsi .. 76 \hfill ... 91
\equiv .. 76 \hline .. 48
\eta .. 76 \hom .. 84
\evenlastex 8, 18 \hookleftarrow .. 76
\exists .. 76 \hookrightarrow ... 76
\exp .. 84 \hrulefill ... 93
\extracolsep 44 \hsize .. 19
\fab .. 96 \hspace .. 91
\fbox ... 38, 96 \huge .. 11
\fboxrule ... 38, 96 \huge .. 11
\fill .. 91 \hyphenation .. 53
\flat .. 76 \i (.dotless i) .. 103
\flo {pagefraction} 21 \if .. 76
\flop .. 21 \ij (ij) .. 104
\flushbottom 17 \IJ (IJ) .. 104
\fnsymbol .. 66 \Im .. 76
\fnsymbol, and footnotes 55 \imath .. 85
\fontencoding 11 \in .. 77
\fontfamily 11 \include ... 105
\fontsize .. 12 \includeonly ... 105
\fontshape .. 13 \indent ... 71
\fontsize .. 13 \index ... 107
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>\medspace</td>
<td>86</td>
</tr>
<tr>
<td>\mho</td>
<td>78</td>
</tr>
<tr>
<td>\mid</td>
<td>78</td>
</tr>
<tr>
<td>\min</td>
<td>85</td>
</tr>
<tr>
<td>\models</td>
<td>78</td>
</tr>
<tr>
<td>\month</td>
<td>68</td>
</tr>
<tr>
<td>\mp</td>
<td>78</td>
</tr>
<tr>
<td>\mu</td>
<td>78</td>
</tr>
<tr>
<td>\multicolumn</td>
<td>46</td>
</tr>
<tr>
<td>\multput</td>
<td>39</td>
</tr>
<tr>
<td>\nabla</td>
<td>78</td>
</tr>
<tr>
<td>\name</td>
<td>110</td>
</tr>
<tr>
<td>\natural</td>
<td>78</td>
</tr>
<tr>
<td>\ne</td>
<td>78</td>
</tr>
<tr>
<td>\nearrow</td>
<td>78</td>
</tr>
<tr>
<td>\neg</td>
<td>79</td>
</tr>
<tr>
<td>\negation</td>
<td>79</td>
</tr>
<tr>
<td>\newcommand</td>
<td>59</td>
</tr>
<tr>
<td>\newcounter</td>
<td>60</td>
</tr>
<tr>
<td>\newenvironment</td>
<td>61</td>
</tr>
<tr>
<td>\newfont</td>
<td>64</td>
</tr>
<tr>
<td>\newlength</td>
<td>60</td>
</tr>
<tr>
<td>\newline</td>
<td>52</td>
</tr>
<tr>
<td>\NEWLINE</td>
<td>91</td>
</tr>
<tr>
<td>\newpage</td>
<td>54</td>
</tr>
<tr>
<td>\newsavebox</td>
<td>61</td>
</tr>
<tr>
<td>\newtheoreme</td>
<td>62</td>
</tr>
<tr>
<td>\newtie</td>
<td>103</td>
</tr>
<tr>
<td>\ng</td>
<td>104</td>
</tr>
<tr>
<td>\WG</td>
<td>104</td>
</tr>
<tr>
<td>\ni</td>
<td>79</td>
</tr>
<tr>
<td>\nocite</td>
<td>49</td>
</tr>
<tr>
<td>\nocorr</td>
<td>9</td>
</tr>
<tr>
<td>\nocorrlist</td>
<td>9</td>
</tr>
<tr>
<td>\nofiles</td>
<td>106</td>
</tr>
<tr>
<td>\noindent</td>
<td>71</td>
</tr>
<tr>
<td>\nolinebreak</td>
<td>53</td>
</tr>
<tr>
<td>\nodefantspace</td>
<td>92</td>
</tr>
<tr>
<td>\nonumber</td>
<td>30</td>
</tr>
<tr>
<td>\nopagebreak</td>
<td>54</td>
</tr>
<tr>
<td>\normalfont</td>
<td>9</td>
</tr>
<tr>
<td>\normalmarginpar</td>
<td>71</td>
</tr>
<tr>
<td>\normalsize</td>
<td>11</td>
</tr>
<tr>
<td>\not</td>
<td>79</td>
</tr>
<tr>
<td>\notin</td>
<td>79</td>
</tr>
<tr>
<td>\nu</td>
<td>79</td>
</tr>
<tr>
<td>\nwarrow</td>
<td>79</td>
</tr>
<tr>
<td>\o (\textit{a})</td>
<td>104</td>
</tr>
<tr>
<td>\O (\textit{e})</td>
<td>104</td>
</tr>
<tr>
<td>\obeycr</td>
<td>52</td>
</tr>
<tr>
<td>\oddsidemargin</td>
<td>8, 18</td>
</tr>
<tr>
<td>\odot</td>
<td>79</td>
</tr>
<tr>
<td>\oe (\textit{a})</td>
<td>104</td>
</tr>
<tr>
<td>\OE (\textit{e})</td>
<td>104</td>
</tr>
<tr>
<td>\oint</td>
<td>79</td>
</tr>
<tr>
<td>\oldstylenums</td>
<td>10</td>
</tr>
<tr>
<td>\omega</td>
<td>79</td>
</tr>
<tr>
<td>\Omega</td>
<td>79</td>
</tr>
</tbody>
</table>
\raisebox .. 97 \small .. 11
\rangle .. 80 \smallint .. 81
\brace .. 80 \smallskip ... 94
\brack .. 80 \smallskipamount 94
\ceil .. 80 \smile ... 81
\Re ... 80 \spadesuit .. 81
\ref .. 24 \sqcap ... 81
\rrefstepcounter 68 \sqcup ... 81
\rrenewenvironment 61 \sqrt{[\text{root}\{}\text{arg}\}} 87
\restorecr 52 \sqsubseteq 81
\restriction 80 \sqsubseteqeq 81
\reversemarginpar 71 \sqsupseteqeq 81
\rfloor 80 \ssubseteq 81
\rfloor 80 \ssubseteqeq 81
\rhd ... 80 \ssubseteqeq 81
\rho ... 80 \ss (\delta) 104
\right 86 \textrel{\{text{relation}\}} 87
\rightarrow 80 \textspace 81
\textasteriskcentered 100 \textcircled{.................................. 103
\textbigcircle 103
\textbar 82
\textbackslash 82
\textbf 46
\textcapcircum 106
\textascenderwordmark 91
\textcircled{[\text{letter}]}} 100
\textcircled{[\text{letter}]}} 100
\textcircled{[\text{letter}]}} 100
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textcompwordmark</td>
<td>101</td>
</tr>
<tr>
<td>\textcopyright</td>
<td>99</td>
</tr>
<tr>
<td>\textdagger</td>
<td>101</td>
</tr>
<tr>
<td>\textdaggerdbl</td>
<td>101</td>
</tr>
<tr>
<td>\textdollar (or $)</td>
<td>101</td>
</tr>
<tr>
<td>\textellipsis</td>
<td>100</td>
</tr>
<tr>
<td>\textendash (or --)</td>
<td>101</td>
</tr>
<tr>
<td>\textendash (or –)</td>
<td>101</td>
</tr>
<tr>
<td>\textgreater</td>
<td>101</td>
</tr>
<tr>
<td>\textheight</td>
<td>18</td>
</tr>
<tr>
<td>\textit</td>
<td>9</td>
</tr>
<tr>
<td>\textleftarrow</td>
<td>101</td>
</tr>
<tr>
<td>\textless</td>
<td>101</td>
</tr>
<tr>
<td>\textmd</td>
<td>9</td>
</tr>
<tr>
<td>\textnormal</td>
<td>9</td>
</tr>
<tr>
<td>\textordfeminine</td>
<td>101</td>
</tr>
<tr>
<td>\textordmasculine</td>
<td>101</td>
</tr>
<tr>
<td>\textparagraph</td>
<td>100</td>
</tr>
<tr>
<td>\textperiodcentered</td>
<td>101</td>
</tr>
<tr>
<td>\textquestiondown (or ?')</td>
<td>101</td>
</tr>
<tr>
<td>\textquotedblleft (or ‘')</td>
<td>101</td>
</tr>
<tr>
<td>\textquotedblright (or ’)</td>
<td>101</td>
</tr>
<tr>
<td>\textquotationleft (or ‘)</td>
<td>101</td>
</tr>
<tr>
<td>\textquotationright (or ’)</td>
<td>101</td>
</tr>
<tr>
<td>\textquotationstraightbase</td>
<td>102</td>
</tr>
<tr>
<td>\textquotationstraightdoblbase</td>
<td>102</td>
</tr>
<tr>
<td>\textrighthook</td>
<td>102</td>
</tr>
<tr>
<td>\textrightarrow</td>
<td>102</td>
</tr>
<tr>
<td>\textsl</td>
<td>9</td>
</tr>
<tr>
<td>\textsc</td>
<td>9</td>
</tr>
<tr>
<td>\textsf</td>
<td>9</td>
</tr>
<tr>
<td>\texttt</td>
<td>9</td>
</tr>
<tr>
<td>\textup</td>
<td>9</td>
</tr>
<tr>
<td>\textvspace</td>
<td>102</td>
</tr>
<tr>
<td>\textwidth</td>
<td>19</td>
</tr>
<tr>
<td>\TeX</td>
<td>100</td>
</tr>
<tr>
<td>\th (\p)</td>
<td>104</td>
</tr>
<tr>
<td>\TH (\P)</td>
<td>104</td>
</tr>
<tr>
<td>\thanks{\text}</td>
<td>89</td>
</tr>
<tr>
<td>\theta</td>
<td>82</td>
</tr>
<tr>
<td>\thicklines</td>
<td>39</td>
</tr>
<tr>
<td>\thicklinespacing</td>
<td>86</td>
</tr>
<tr>
<td>\thinspace</td>
<td>39</td>
</tr>
<tr>
<td>\times</td>
<td>85</td>
</tr>
<tr>
<td>\textbf{\textit}{\textsc}</td>
<td>11</td>
</tr>
</tbody>
</table>

\textbf{Command Index} 129
\widehat	86
\widetilde	86
\width	70
\wp	84
\wr	84
\xi	84
\Xi	84
\year	68
\zeta	84

| \{\ldots\} for required arguments | 5 |

1	
10pt option	7
11pt option	7
12pt option	7

A	
a4paper option	7
a5paper option	7
abstract environment	25
array environment	25
article class	7

B	
b5paper option	7
book class	7
bottomnumber	21
\bp	69

C	
cc	69
center environment	26
clock option to slides class	8
cm	69

D	
dbltopnumber	21
dd	69
description environment	27
displaymath environment	27, 73
document environment	28
draft option	8
dvipdf command	3
dvips command	3
dvitype command	3

E	
em	69
enumerate environment	29
eqarray environment	30
equation environment	31, 73
etex command	4
ex	69
executivepaper option	7

F	
figure	31
filecontents	32
final option	8
first-latex-doc document	2
fleqn option	8
flushleft environment	33
flushright environment	33

| H | |
| http://home.gna.org/latexrefman home page | 2 |

I	
in	69
inch	69
indexspace	107
itemize environment	33

L	
landscape option	8
latex command	3
latex-doc-ptr document	2
latexrefman-discuss@gna.org email address	2
legalpaper option	7
legno option	8
letter class	7
letter environment	35
letterpaper option	7
list	35
\LRbox	37
\Ltimes	96
\short document	2
lualatex command	4

M	
math environment	36, 73
minipage environment	36
mm	69
mu	69

<p>| N | |
| notitlepage option | 8 |</p>
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>onecolumn option</td>
<td>8</td>
</tr>
<tr>
<td>oneside option</td>
<td>8</td>
</tr>
<tr>
<td>openany option</td>
<td>8</td>
</tr>
<tr>
<td>openbib option</td>
<td>8</td>
</tr>
<tr>
<td>openright option</td>
<td>8</td>
</tr>
<tr>
<td>pc</td>
<td>69</td>
</tr>
<tr>
<td>pdflatex command</td>
<td>4</td>
</tr>
<tr>
<td>picture</td>
<td>37</td>
</tr>
<tr>
<td>printindex</td>
<td>107</td>
</tr>
<tr>
<td>pt</td>
<td>69</td>
</tr>
<tr>
<td>quotation</td>
<td>40</td>
</tr>
<tr>
<td>quote</td>
<td>40</td>
</tr>
<tr>
<td>report class</td>
<td>7</td>
</tr>
<tr>
<td>secnumdepth counter</td>
<td>22</td>
</tr>
<tr>
<td>slides class</td>
<td>7</td>
</tr>
<tr>
<td>sp</td>
<td>69</td>
</tr>
<tr>
<td>tabbing environment</td>
<td>41</td>
</tr>
<tr>
<td>table</td>
<td>42</td>
</tr>
<tr>
<td>tabular environment</td>
<td>43</td>
</tr>
<tr>
<td>textcomp package</td>
<td>99</td>
</tr>
<tr>
<td>thebibliography environment</td>
<td>48</td>
</tr>
<tr>
<td>theorem environment</td>
<td>49</td>
</tr>
<tr>
<td>titlepage environment</td>
<td>50</td>
</tr>
<tr>
<td>titlepage option</td>
<td>8</td>
</tr>
<tr>
<td>topmargin</td>
<td>19</td>
</tr>
<tr>
<td>topline</td>
<td>21</td>
</tr>
<tr>
<td>totalnumber</td>
<td>21</td>
</tr>
<tr>
<td>twocolumn option</td>
<td>8</td>
</tr>
<tr>
<td>twoside option</td>
<td>8</td>
</tr>
<tr>
<td>usrguide official documentation</td>
<td>2</td>
</tr>
<tr>
<td>verbatim environment</td>
<td>50</td>
</tr>
<tr>
<td>verse environment</td>
<td>50</td>
</tr>
<tr>
<td>xdvi command</td>
<td>3</td>
</tr>
<tr>
<td>xdvipdfmx</td>
<td>5</td>
</tr>
<tr>
<td>xelatex command</td>
<td>5</td>
</tr>
</tbody>
</table>