
TEX BY TOPIC, A TEXNICIAN’S REFERENCE

VICTOR EIJKHOUT

Copyright c© 2007 Victor Eijkhout.
Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ”GNU Free Documentation
License”. This document is based on the book TEX by Topic, copyright 1991-2007 Victor

Eijkhout. This book was printed in 1991 by Addison-Wesley UK, ISBN 0-201-56882-9,
reprinted in 1993, pdf version first made freely available in 2001.

Victor Eijkhout – TEX by Topic 1

Contents

License 14
1 The Structure of the TEX Processor 21
1.1 Four TEX processors 21
1.2 The input processor 22
1.2.1 Character input 22
1.2.2 Two-level input processing 22
1.3 The expansion processor 23
1.3.1 The process of expansion 23
1.3.2 Special cases: \expandafter, \noexpand, and \the 24
1.3.3 Braces in the expansion processor 24
1.4 The execution processor 25
1.5 The visual processor 26
1.6 Examples 26
1.6.1 Skipped spaces 26
1.6.2 Internal quantities and their representations 26
2 Category Codes and Internal States 28
2.1 Introduction 28
2.2 Initial processing 28
2.3 Category codes 29
2.4 From characters to tokens 31
2.5 The input processor as a finite state automaton 31
2.5.1 State N: new line 31
2.5.2 State S: skipping spaces 32
2.5.3 State M: middle of line 32
2.6 Accessing the full character set 32
2.7 Transitions between internal states 32
2.7.1 0: escape character 33
2.7.2 1–4, 7–8, 11–13: non-blank characters 33
2.7.3 5: end of line 33
2.7.4 6: parameter 33
2.7.5 7: superscript 33
2.7.6 9: ignored character 34
2.7.7 10: space 34
2.7.8 14: comment 34
2.7.9 15: invalid 34
2.8 Letters and other characters 34

2

Contents

2.9 The \par token 35
2.10 Spaces 36
2.10.1 Skipped spaces 36
2.10.2 Optional spaces 36
2.10.3 Ignored and obeyed spaces 37
2.10.4 More ignored spaces 38
2.10.5 〈space token〉 38
2.10.6 Control space 38
2.10.7 ‘ ’ 39
2.11 More about line ends 39
2.11.1 Obeylines 39
2.11.2 Changing the \endlinechar 40
2.11.3 More remarks about the end-of-line character 40
2.12 More about the input processor 41
2.12.1 The input processor as a separate process 41
2.12.2 The input processor not as a separate process 41
2.12.3 Recursive invocation of the input processor 42
2.13 The @ convention 42
3 Characters 43
3.1 Character codes 43
3.2 Control sequences for characters 44
3.3 Denoting characters to be typeset: \char 44
3.3.1 Implicit character tokens: \let 45
3.4 Accents 46
3.5 Testing characters 47
3.6 Uppercase and lowercase 48
3.6.1 Uppercase and lowercase codes 48
3.6.2 Uppercase and lowercase commands 48
3.6.3 Uppercase and lowercase forms of keywords 49
3.6.4 Creative use of \uppercase and \lowercase 49
3.7 Codes of a character 49
3.8 Converting tokens into character strings 50
3.8.1 Output of control sequences 50
3.8.2 Category codes of a \string 50
4 Fonts 52
4.1 Fonts 52
4.2 Font declaration 53
4.2.1 Fonts and tfm files 53
4.2.2 Querying the current font and font names 53
4.2.3 \nullfont 54
4.3 Font information 54
4.3.1 Font dimensions 54
4.3.2 Kerning 55
4.3.3 Italic correction 55
4.3.4 Ligatures 56
4.3.5 Boundary ligatures 56

Victor Eijkhout – TEX by Topic 3

Contents

5 Boxes 57
5.1 Boxes 58
5.2 Box registers 58
5.2.1 Allocation: \newbox 58
5.2.2 Usage: \setbox, \box, \copy 59
5.2.3 Testing: \ifvoid, \ifhbox, \ifvbox 59
5.2.4 The \lastbox 60
5.3 Natural dimensions of boxes 60
5.3.1 Dimensions of created horizontal boxes 60
5.3.2 Dimensions of created vertical boxes 61
5.3.3 Examples 62
5.4 More about box dimensions 63
5.4.1 Predetermined dimensions 63
5.4.2 Changes to box dimensions 63
5.4.3 Moving boxes around 64
5.4.4 Box dimensions and box placement 64
5.4.5 Boxes and negative glue 65
5.5 Overfull and underfull boxes 65
5.6 Opening and closing boxes 66
5.7 Unboxing 67
5.8 Text in boxes 68
5.9 Assorted remarks 69
5.9.1 Forgetting the \box 69
5.9.2 Special-purpose boxes 69
5.9.3 The height of a vertical box in horizontal mode 69
5.9.4 More subtleties with vertical boxes 69
5.9.5 Hanging the \lastbox back in the list 70
5.9.6 Dissecting paragraphs with \lastbox 71
6 Horizontal and Vertical Mode 72
6.1 Horizontal and vertical mode 72
6.1.1 Horizontal mode 72
6.1.2 Vertical mode 73
6.2 Horizontal and vertical commands 73
6.3 The internal modes 74
6.3.1 Restricted horizontal mode 74
6.3.2 Internal vertical mode 75
6.4 Boxes and modes 75
6.4.1 What box do you use in what mode? 75
6.4.2 What mode holds in what box? 75
6.4.3 Mode-dependent behaviour of boxes 75
6.5 Modes and glue 76
6.6 Migrating material 76
6.6.1 \vadjust 76
6.7 Testing modes 77
7 Numbers 79
7.1 Numbers and 〈number〉s 79

4 Victor Eijkhout – TEX by Topic

Contents

7.2 Integers 79
7.2.1 Denotations: integers 80
7.2.2 Denotations: characters 80
7.2.3 Internal integers 81
7.2.4 Internal integers: other codes of a character 82
7.2.5 〈special integer〉 82
7.2.6 Other internal quantities: coersion to integer 82
7.2.7 Trailing spaces 82
7.3 Numbers 83
7.4 Integer registers 83
7.5 Arithmetic 84
7.5.1 Arithmetic statements 84
7.5.2 Floating-point arithmetic 84
7.5.3 Fixed-point arithmetic 85
7.6 Number testing 85
7.7 Remarks 85
7.7.1 Character constants 85
7.7.2 Expanding too far / how far 86
8 Dimensions and Glue 87
8.1 Definition of 〈glue〉 and 〈dimen〉 88
8.1.1 Definition of dimensions 88
8.1.2 Definition of glue 89
8.1.3 Conversion of 〈glue〉 to 〈dimen〉 90
8.1.4 Registers for \dimen and \skip 90
8.1.5 Arithmetic: addition 91
8.1.6 Arithmetic: multiplication and division 91
8.2 More about dimensions 92
8.2.1 Units of measurement 92
8.2.2 Dimension testing 92
8.2.3 Defined dimensions 92
8.3 More about glue 93
8.3.1 Stretch and shrink 93
8.3.2 Glue setting 94
8.3.3 Badness 95
8.3.4 Glue and breaking 95
8.3.5 \kern 95
8.3.6 Glue and modes 96
8.3.7 The last glue item in a list: backspacing 96
8.3.8 Examples of backspacing 96
8.3.9 Glue in trace output 97
9 Rules and Leaders 98
9.1 Rules 98
9.1.1 Rule dimensions 99
9.2 Leaders 99
9.2.1 Rule leaders 100
9.2.2 Box leaders 101

Victor Eijkhout – TEX by Topic 5

Contents

9.2.3 Evenly spaced leaders 102
9.3 Assorted remarks 102
9.3.1 Rules and modes 102
9.3.2 Ending a paragraph with leaders 102
9.3.3 Leaders and box registers 103
9.3.4 Output in leader boxes 103
9.3.5 Box leaders in trace output 103
9.3.6 Leaders and shifted margins 103
10 Grouping 105
10.1 The grouping mechanism 105
10.2 Local and global assignments 106
10.3 Group delimiters 106
10.4 More about braces 107
10.4.1 Brace counters 107
10.4.2 The brace as a token 108
10.4.3 Open and closing brace control symbols 108
11 Macros 109
11.1 Introduction 109
11.2 Layout of a macro definition 110
11.3 Prefixes 110
11.4 The definition type 111
11.5 The parameter text 111
11.5.1 Undelimited parameters 112
11.5.2 Delimited parameters 112
11.5.3 Examples with delimited arguments 113
11.5.4 Empty arguments 114
11.5.5 The macro parameter character 114
11.5.6 Brace delimiting 115
11.6 Construction of control sequences 116
11.7 Token assignments by \let and \futurelet 116
11.7.1 \let 117
11.7.2 \futurelet 117
11.8 Assorted remarks 117
11.8.1 Active characters 117
11.8.2 Macros versus primitives 118
11.8.3 Tail recursion 118
11.9 Macro techniques 119
11.9.1 Unknown number of arguments 119
11.9.2 Examining the argument 120
11.9.3 Optional macro parameters with \futurelet 121
11.9.4 Two-step macros 122
11.9.5 A comment environment 122
12 Expansion 125
12.1 Introduction 125
12.2 Ordinary expansion 125
12.3 Reversing expansion order 126

6 Victor Eijkhout – TEX by Topic

Contents

12.3.1 One step expansion: \expandafter 126
12.3.2 Total expansion: \edef 127
12.3.3 \afterassignment 128
12.3.4 \aftergroup 128
12.4 Preventing expansion 129
12.4.1 \noexpand 129
12.4.2 \noexpand and active characters 130
12.5 \relax 130
12.5.1 \relax and \csname 131
12.5.2 Preventing expansion with \relax 132
12.5.3 TEX inserts a \relax 132
12.5.4 The value of non-macros; \the 132
12.6 Examples 133
12.6.1 Expanding after 133
12.6.2 Defining inside an \edef 134
12.6.3 Expansion and \write 134
12.6.4 Controlled expansion inside an \edef 135
12.6.5 Multiple prevention of expansion 136
12.6.6 More examples with \relax 136
12.6.7 Example: category code saving and restoring 137
12.6.8 Combining \aftergroup and boxes 138
12.6.9 More expansion 139
13 Conditionals 140
13.1 The shape of conditionals 140
13.2 Character and control sequence tests 141
13.2.1 \if 141
13.2.2 \ifcat 141
13.2.3 \ifx 142
13.3 Mode tests 142
13.4 Numerical tests 143
13.5 Other tests 143
13.5.1 Dimension testing 143
13.5.2 Box tests 143
13.5.3 I/O tests 143
13.5.4 Case statement 143
13.5.5 Special tests 144
13.6 The \newif macro 144
13.7 Evaluation of conditionals 145
13.8 Assorted remarks 146
13.8.1 The test gobbles up tokens 146
13.8.2 The test wants to gobble up the \else or \fi 146
13.8.3 Macros and conditionals; the use of \expandafter 147
13.8.4 Incorrect matching 148
13.8.5 Conditionals and grouping 149
13.8.6 A trick 149
13.8.7 More examples of expansion in conditionals 149

Victor Eijkhout – TEX by Topic 7

Contents

14 Token Lists 152
14.1 Token lists 152
14.2 Use of token lists 152
14.3 〈token parameter〉 153
14.4 Token list registers 153
14.5 Examples 154
14.5.1 Operations on token lists: stack macros 154
14.5.2 Executing token lists 155
15 Baseline Distances 157
15.1 Interline glue 157
15.2 The perceived depth of boxes 159
15.3 Terminology 159
15.4 Additional remarks 160
16 Paragraph Start 161
16.1 When does a paragraph start 161
16.2 What happens when a paragraph starts 162
16.3 Assorted remarks 162
16.3.1 Starting a paragraph with a box 162
16.3.2 Starting a paragraph with a group 162
16.4 Examples 163
16.4.1 Stretchable indentation 163
16.4.2 Suppressing indentation 163
16.4.3 An indentation scheme 163
16.4.4 A paragraph skip scheme 164
17 Paragraph End 166
17.1 The way paragraphs end 166
17.1.1 The \par command and the \par token 167
17.1.2 Paragraph filling: \parfillskip 167
17.2 Assorted remarks 167
17.2.1 Ending a paragraph and a group at the same time 167
17.2.2 Ending a paragraph with \hfill\break 168
17.2.3 Ending a paragraph with a rule 168
17.2.4 No page breaks in between paragraphs 168
17.2.5 Finite \parfillskip 168
17.2.6 A precaution for paragraphs that do not indent 169
18 Paragraph Shape 170
18.1 The width of text lines 170
18.2 Shape parameters 170
18.2.1 Hanging indentation 170
18.2.2 General paragraph shapes: \parshape 172
18.3 Assorted remarks 172
18.3.1 Centred last lines 172
18.3.2 Indenting into the margin 173
18.3.3 Hang a paragraph from an object 173
18.3.4 Another approach to hanging indentation 174
18.3.5 Hanging indentation versus \leftskip shifting 174

8 Victor Eijkhout – TEX by Topic

Contents

18.3.6 More examples 174
19 Line Breaking 175
19.1 Paragraph break cost calculation 176
19.1.1 Badness 176
19.1.2 Penalties and other break locations 177
19.1.3 Demerits 177
19.1.4 The number of lines of a paragraph 178
19.1.5 Between the lines 178
19.2 The process of breaking 179
19.2.1 Three passes 179
19.2.2 Tolerance values 179
19.3 Discretionaries 180
19.3.1 Hyphens and discretionaries 180
19.3.2 Examples of discretionaries 181
19.4 Hyphenation 181
19.4.1 Start of a word 181
19.4.2 End of a word 182
19.4.3 TEX2 versus TEX3 182
19.4.4 Patterns and exceptions 182
19.5 Switching hyphenation patterns 183
20 Spacing 185
20.1 Introduction 185
20.2 Automatic interword space 185
20.3 User interword space 186
20.4 Control space and tie 187
20.5 More on the space factor 188
20.5.1 Space factor assignments 188
20.5.2 Punctuation 188
20.5.3 Other non-letters 189
20.5.4 Other influences on the space factor 189
21 Characters in Math Mode 190
21.1 Mathematical characters 191
21.2 Delimiters 191
21.2.1 Delimiter codes 192
21.2.2 Explicit \delimiter commands 192
21.2.3 Finding a delimiter; successors 192
21.2.4 \big, \Big, \bigg, and \Bigg delimiter macros 193
21.3 Radicals 193
21.4 Math accents 194
22 Fonts in Formulas 196
22.1 Determining the font of a character in math mode 196
22.2 Initial family settings 197
22.3 Family definition 197
22.4 Some specific font changes 198
22.4.1 Change the font of ordinary characters and uppercase Greek 198
22.4.2 Change uppercase Greek independent of text font 198

Victor Eijkhout – TEX by Topic 9

Contents

22.4.3 Change the font of lowercase Greek 198
22.5 Assorted remarks 199
22.5.1 New fonts in formulas 199
22.5.2 Evaluating the families 199
23 Mathematics Typesetting 200
23.1 Math modes 201
23.2 Styles in math mode 201
23.2.1 Superscripts and subscripts 202
23.2.2 Choice of styles 202
23.3 Classes of mathematical objects 203
23.4 Large operators and their limits 204
23.5 Vertical centring: \vcenter 204
23.6 Mathematical spacing: mu glue 205
23.6.1 Classification of mu glue 205
23.6.2 Muskip registers 206
23.6.3 Other spaces in math mode 206
23.7 Generalized fractions 206
23.8 Underlining, overlining 207
23.9 Line breaking in math formulas 207
23.10 Font dimensions of families 2 and 3 208
23.10.1 Symbol font attributes 208
23.10.2 Extension font attributes 209
23.10.3 Example: subscript lowering 209
24 Display Math 210
24.1 Displays 210
24.2 Displays in paragraphs 211
24.3 Vertical material around displays 211
24.4 Glue setting of the display math list 212
24.5 Centring the display formula: displacement 212
24.6 Equation numbers 213
24.6.1 Ordinary equation numbers 213
24.6.2 The equation number on a separate line 213
24.7 Non-centred displays 214
25 Alignment 215
25.1 Introduction 215
25.2 Horizontal and vertical alignment 215
25.2.1 Horizontal alignments: \halign 216
25.2.2 Vertical alignments: \valign 216
25.2.3 Material between the lines: \noalign 216
25.2.4 Size of the alignment 217
25.3 The preamble 217
25.3.1 Infinite preambles 217
25.3.2 Brace counting in preambles 218
25.3.3 Expansion in the preamble 218
25.3.4 \tabskip 218
25.4 The alignment 219

10 Victor Eijkhout – TEX by Topic

Contents

25.4.1 Reading an entry 219
25.4.2 Alternate specifications: \omit 220
25.4.3 Spanning across multiple columns: \span 220
25.4.4 Rules in alignments 221
25.4.5 End of a line: \cr and \crcr 222
25.5 Example: math alignments 222
26 Page Shape 224
26.1 The reference point for global positioning 224
26.2 \topskip 224
26.3 Page height and depth 225
27 Page Breaking 226
27.1 The current page and the recent contributions 227
27.2 Activating the page builder 227
27.3 Page length bookkeeping 227
27.4 Breakpoints 228
27.4.1 Possible breakpoints 228
27.4.2 Breakpoint penalties 228
27.4.3 Breakpoint computation 229
27.5 \vsplit 230
27.6 Examples of page breaking 231
27.6.1 Filling up a page 231
27.6.2 Determining the breakpoint 231
27.6.3 The page builder after a paragraph 233
28 Output Routines 234
28.1 The \output token list 234
28.2 Output and \box255 235
28.3 Marks 236
28.4 Assorted remarks 237
28.4.1 Hazards in non-trivial output routines 237
28.4.2 Page numbering 237
28.4.3 Headlines and footlines in plain TEX 237
28.4.4 Example: no widow lines 238
28.4.5 Example: no indentation top of page 238
28.4.6 More examples of output routines 239
29 Insertions 240
29.1 Insertion items 240
29.2 Insertion class declaration 241
29.3 Insertion parameters 241
29.4 Moving insertion items from the contributions list 242
29.5 Insertions in the output routine 243
29.6 Plain TEX insertions 243
30 File Input and Output 245
30.1 Including files: \input and \endinput 245
30.2 File I/O 246
30.2.1 Opening and closing streams 246
30.2.2 Input with \read 246

Victor Eijkhout – TEX by Topic 11

Contents

30.2.3 Output with \write 247
30.3 Whatsits 247
30.4 Assorted remarks 248
30.4.1 Inspecting input 248
30.4.2 Testing for existence of files 248
30.4.3 Timing problems 248
30.4.4 \message versus \immediate\write16 249
30.4.5 Write inside a vertical box 249
30.4.6 Expansion and spaces in \write and \message 249
31 Allocation 251
31.1 Allocation commands 251
31.1.1 \count, \dimen, \skip, \muskip, \toks 252
31.1.2 \box, \fam, \write, \read, \insert 252
31.2 Ground rules for macro writers 252
32 Running TEX 254
32.1 Jobs 254
32.1.1 Start of the job 254
32.1.2 End of the job 255
32.1.3 The log file 255
32.2 Run modes 255
33 TEX and the Outside World 257
33.1 TEX, IniTEX, VirTEX 257
33.1.1 Formats: loading 257
33.1.2 Formats: dumping 258
33.1.3 Formats: preloading 258
33.1.4 The knowledge of IniTEX 258
33.1.5 Memory sizes of TEX and IniTEX 259
33.2 More about formats 259
33.2.1 Compatibility 259
33.2.2 Preloaded fonts 260
33.2.3 The plain format 260
33.2.4 The LATEX format 260
33.2.5 Mathematical formats 260
33.2.6 Other formats 261
33.3 The dvi file 261
33.3.1 The dvi file format 261
33.3.2 Page identification 262
33.3.3 Magnification 262
33.4 Specials 262
33.5 Time 263
33.6 Fonts 263
33.6.1 Font metrics 263
33.6.2 Virtual fonts 263
33.6.3 Font files 264
33.6.4 Computer Modern 264
33.7 TEX and web 265

12 Victor Eijkhout – TEX by Topic

Contents

33.8 The TEX Users Group 265
34 Tracing 267
34.1 Meaning and content: \show, \showthe, \meaning 268
34.2 Show boxes: \showbox, \tracingoutput 268
34.3 Global statistics 270
35 Errors, Catastrophes, and Help 272
35.1 Error messages 272
35.2 Overflow errors 273
35.2.1 Buffer size (500) 273
35.2.2 Exception dictionary (307) 273
35.2.3 Font memory (20 000) 274
35.2.4 Grouping levels 274
35.2.5 Hash size (2100) 274
35.2.6 Number of strings (3000) 274
35.2.7 Input stack size (200) 274
35.2.8 Main memory size (30 000) 274
35.2.9 Parameter stack size (60) 275
35.2.10 Pattern memory (8000) 275
35.2.11 Pattern memory ops per language 275
35.2.12 Pool size (32 000) 275
35.2.13 Save size (600) 275
35.2.14 Semantic nest size (40) 276
35.2.15 Text input levels (6) 276
36 The Grammar of TEX 277
36.1 Notations 277
36.2 Keywords 278
36.3 Specific grammatical terms 278
36.3.1 〈equals〉 278
36.3.2 〈filler〉, 〈general text〉 278
36.3.3 {} and 〈left brace〉〈right brace〉 279
36.3.4 〈math field〉 279
36.4 Differences between TEX versions 2 and 3 279
37 Glossary of TEX Primitives 281
38 Tables 295
38.1 Character tables 296
38.2 Computer modern fonts 298
38.3 Plain TEX math symbols 303
38.3.1 Mathcharacter codes 303
38.3.2 Delimiter codes 304
38.3.3 〈mathchardef tokens〉: ordinary symbols 305
38.3.4 〈mathchardef tokens〉: large operators 306
38.3.5 〈mathchardef tokens〉: binary operations 307
38.3.6 〈mathchardef tokens〉: relations 308
38.3.7 \delimiter macros 309

Victor Eijkhout – TEX by Topic 13

Contents

License GNU Free Documentation License

Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor,
Boston, MA 02110-1301 USA Everyone is permitted to copy and distribute verbatim co-
pies of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document ”free” in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of ”copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public Li-
cense, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals provi-
ding the same freedoms that the software does. But this License is not limited to software
manuals; it can be used for any textual work, regardless of subject matter or whether it
is published as a printed book. We recommend this License principally for works whose
purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The ”Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as ”you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.

A ”Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A ”Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The ”Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not

14 Victor Eijkhout – TEX by Topic

Contents

allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

The ”Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25
words.

A ”Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising the
document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats suita-
ble for input to text formatters. A copy made in an otherwise Transparent file format whose
markup, or absence of markup, has been arranged to thwart or discourage subsequent mo-
dification by readers is not Transparent. An image format is not Transparent if used for any
substantial amount of text. A copy that is not ”Transparent” is called ”Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifica-
tion. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word proces-
sors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.

The ”Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, ”Title Page” means the
text near the most prominent appearance of the work’s title, preceding the beginning of the
body of the text.

A section ”Entitled XYZ” means a named subunit of the Document whose title either is pre-
cisely XYZ or contains XYZ in parentheses following text that translates XYZ in another
language. (Here XYZ stands for a specific section name mentioned below, such as ”Ack-
nowledgements”, ”Dedications”, ”Endorsements”, or ”History”.) To ”Preserve the Title”
of such a section when you modify the Document means that it remains a section ”Entitled
XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be in-
cluded by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or non-
commercially, provided that this License, the copyright notices, and the license notice say-

Victor Eijkhout – TEX by Topic 15

Contents

ing this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission. B. List on the Title Page, as authors, one or more

16 Victor Eijkhout – TEX by Topic

Contents

persons or entities responsible for authorship of the modifications in the Modified Version,
together with at least five of the principal authors of the Document (all of its principal
authors, if it has fewer than five), unless they release you from this requirement. C. State
on the Title page the name of the publisher of the Modified Version, as the publisher. D.
Preserve all the copyright notices of the Document. E. Add an appropriate copyright notice
for your modifications adjacent to the other copyright notices. F. Include, immediately after
the copyright notices, a license notice giving the public permission to use the Modified
Version under the terms of this License, in the form shown in the Addendum below. G.
Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice. H. Include an unaltered copy of this License. I.
Preserve the section Entitled ”History”, Preserve its Title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the Title
Page. If there is no section Entitled ”History” in the Document, create one stating the title,
year, authors, and publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence. J. Preserve the network
location, if any, given in the Document for public access to a Transparent copy of the
Document, and likewise the network locations given in the Document for previous versions
it was based on. These may be placed in the ”History” section. You may omit a network
location for a work that was published at least four years before the Document itself, or if
the original publisher of the version it refers to gives permission. K. For any section Entitled
”Acknowledgements” or ”Dedications”, Preserve the Title of the section, and preserve in
the section all the substance and tone of each of the contributor acknowledgements and/or
dedications given therein. L. Preserve all the Invariant Sections of the Document, unaltered
in their text and in their titles. Section numbers or the equivalent are not considered part of
the section titles. M. Delete any section Entitled ”Endorsements”. Such a section may not
be included in the Modified Version. N. Do not retitle any existing section to be Entitled
”Endorsements” or to conflict in title with any Invariant Section. O. Preserve any Warranty
Disclaimers. If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the Document, you may
at your option designate some or all of these sections as invariant. To do this, add their titles
to the list of Invariant Sections in the Modified Version’s license notice. These titles must
be distinct from any other section titles.

You may add a section Entitled ”Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties–for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to

Victor Eijkhout – TEX by Topic 17

Contents

use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical In-
variant Sections may be replaced with a single copy. If there are multiple Invariant Sections
with the same name but different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment to the section titles
in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled ”History” in the various ori-
ginal documents, forming one section Entitled ”History”; likewise combine any sections
Entitled ”Acknowledgements”, and any sections Entitled ”Dedications”. You must delete
all sections Entitled ”Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent do-
cuments or works, in or on a volume of a storage or distribution medium, is called an
”aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the Do-
cument is included in an aggregate, this License does not apply to the other works in the
aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations re-
quires special permission from their copyright holders, but you may include translations

18 Victor Eijkhout – TEX by Topic

Contents

of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include the original Eng-
lish version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a
notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled ”Acknowledgements”, ”Dedications”, or ”History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or distribute
the Document is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Do-
cumentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License ”or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

Victor Eijkhout – TEX by Topic 19

Contents

Preface To the casual observer, TEX is not a state-of-the-art typesetting system. No flashy
multilevel menus and interactive manipulation of text and graphics dazzle the onlooker. On
a less superficial level, however, TEX is a very sophisticated program, first of all because
of the ingeniousness of its built-in algorithms for such things as paragraph breaking and
make-up of mathematical formulas, and second because of its almost complete program-
mability. The combination of these factors makes it possible for TEX to realize almost every
imaginable layout in a highly automated fashion.

Unfortunately, it also means that TEX has an unusually large number of commands and
parameters, and that programming TEX can be far from easy. Anyone wanting to program
in TEX, and maybe even the ordinary user, would seem to need two books: a tutorial that
gives a first glimpse of the many nuts and bolts of TEX, and after that a systematic, complete
reference manual. This book tries to fulfil the latter function. A TEXer who has already
made a start (using any of a number of introductory books on the market) should be able to
use this book indefinitely thereafter.

In this volume the universe of TEX is presented as about forty different subjects, each in
a separate chapter. Each chapter starts out with a list of control sequences relevant to the
topic of that chapter and proceeds to treat the theory of the topic. Most chapters conclude
with remarks and examples.

Globally, the chapters are ordered as follows. The chapters on basic mechanisms are first,
the chapters on text treatment and mathematics are next, and finally there are some chapters
on output and aspects of TEX’s connections to the outside world. The book also contains
a glossary of TEX commands, tables, and indexes by example, by control sequence, and
by subject. The subject index refers for most concepts to only one page, where most of
the information on that topic can be found, as well as references to the locations of related
information.

This book does not treat any specific TEX macro package. Any parts of the plain format
that are treated are those parts that belong to the ‘core’ of plain TEX: they are also present
in, for instance, LATEX. Therefore, most remarks about the plain format are true for LATEX,
as well as most other formats. Putting it differently, if the text refers to the plain format,
this should be taken as a contrast to pure IniTEX, not to LATEX. By way of illustration,
occasionally macros from plain TEX are explained that do not belong to the core.

Acknowledgment
I am indebted to Barbara Beeton, Karl Berry, and Nico Poppelier, who read previous versi-
ons of this book. Their comments helped to improve the presentation. Also I would like to
thank the participants of the discussion lists TEXhax, TEX-nl, and comp.text.tex. Their
questions and answers gave me much food for thought. Finally, any acknowledgement in
a book about TEX ought to include Donald Knuth for inventing TEX in the first place. This
book is no exception.

Victor Eijkhout
Urbana, Illinois, August 1991

Knoxville, Tennessee, May 2001

20 Victor Eijkhout – TEX by Topic

Chapter 1

The Structure of the TEX Processor

This book treats the various aspects of TEX in chapters that are concerned with relatively
small, well-delineated, topics. In this chapter, therefore, a global picture of the way TEX
operates will be given. Of necessity, many details will be omitted here, but all of these are
treated in later chapters. On the other hand, the few examples given in this chapter will
be repeated in the appropriate places later on; they are included here to make this chapter
self-contained.

1.1 Four TEX processors
The way TEX processes its input can be viewed as happening on four levels. One might say
that the TEX processor is split into four separate units, each one accepting the output of the
previous stage, and delivering the input for the next stage. The input of the first stage is
then the .tex input file; the output of the last stage is a .dvi file.

For many purposes it is most convenient, and most insightful, to consider these four levels
of processing as happening after one another, each one accepting the completed output of
the previous level. In reality this is not true: all levels are simultaneously active, and there
is interaction between them.

The four levels are (corresponding roughly to the ‘eyes’, ‘mouth’, ‘stomach’, and ‘bowels’
respectively in Knuth’s original terminology) as follows.
1. The input processor. This is the piece of TEX that accepts input lines from the file

system of whatever computer TEX runs on, and turns them into tokens. Tokens are
the internal objects of TEX: there are character tokens that constitute the typeset
text, and control sequence tokens that are commands to be processed by the next
two levels.

2. The expansion processor. Some but not all of the tokens generated in the first level
– macros, conditionals, and a number of primitive TEX commands – are subject to
expansion. Expansion is the process that replaces some (sequences of) tokens by
other (or no) tokens.

3. The execution processor. Control sequences that are not expandable are executa-
ble, and this execution takes place on the third level of the TEX processor.

21

Chapter 1. The Structure of the TEX Processor

One part of the activity here concerns changes to TEX’s internal state: assignments
(including macro definitions) are typical activities in this category. The other ma-
jor thing happening on this level is the construction of horizontal, vertical, and
mathematical lists.

4. The visual processor. In the final level of processing the visual part of TEX proces-
sing is performed. Here horizontal lists are broken into paragraphs, vertical lists
are broken into pages, and formulas are built out of math lists. Also the output to
the dvi file takes place on this level. The algorithms working here are not acces-
sible to the user, but they can be influenced by a number of parameters.

1.2 The input processor
The input processor of TEX is that part of TEX that translates whatever characters it gets
from the input file into tokens. The output of this processor is a stream of tokens: a token
list. Most tokens fall into one of two categories: character tokens and control sequence
tokens. The remaining category is that of the parameter tokens; these will not be treated in
this chapter.

1.2.1 Character input

For simple input text, characters are made into character tokens. However, TEX can ignore
input characters: a row of spaces in the input is usually equivalent to just one space. Also,
TEX itself can insert tokens that do not correspond to any character in the input, for instance
the space token at the end of the line, or the \par token after an empty line.

Not all character tokens signify characters to be typeset. Characters fall into sixteen catego-
ries – each one specifying a certain function that a character can have – of which only two
contain the characters that will be typeset. The other categories contain such characters
as {, }, &, and #. A character token can be considered as a pair of numbers: the charac-
ter code – typically the ASCII code – and the category code. It is possible to change the
category code that is associated with a particular character code.

When the escape character (by default \) appears in the input, TEX’s behaviour in forming
tokens is more complicated. Basically, TEX builds a control sequence by taking a number
of characters from the input and lumping them together into a single token.

The behaviour with which TEX’s input processor reacts to category codes can be described
as a machine that switches between three internal states: N , new line; M , middle of line;
S, skipping spaces. These states and the transitions between them are treated in Chapter 2.

1.2.2 Two-level input processing

TEX’s input processor is in fact itself a two-level processor. Because of limitations of the
terminal, the editor, or the operating system, the user may not be able to input certain
desired characters. Therefore, TEX provides a mechanism to access with two superscript
characters all of the available character positions. This may be considered a separate stage
of TEX processing, taking place prior to the three-state machine mentioned above.

22 Victor Eijkhout – TEX by Topic

1.3. The expansion processor

For instance, the sequence ^^+ is replaced by k because the ASCII codes of k and + differ
by 64. Since this replacement takes place before tokens are formed, writing \vs^^+ip 5cm
has the same effect as \vskip 5cm. Examples more useful than this exist.

Note that this first stage is a transformation from characters to characters, without consi-
dering category codes. These come into play only in the second phase of input processing
where characters are converted to character tokens by coupling the category code to the
character code.

1.3 The expansion processor
TEX’s expansion processor accepts a stream of tokens and, if possible, expands the tokens
in this stream one by one until only unexpandable tokens remain. Macro expansion is the
clearest example of this: if a control sequence is a macro name, it is replaced (together
possibly with parameter tokens) by the definition text of the macro.

Input for the expansion processor is provided mainly by the input processor. The stream of
tokens coming from the first stage of TEX processing is subject to the expansion process,
and the result is a stream of unexpandable tokens which is fed to the execution processor.

However, the expansion processor comes into play also when (among others) an \edef or
\write is processed. The parameter token list of these commands is expanded very much
as if the lists had been on the top level, instead of the argument to a command.

1.3.1 The process of expansion

Expanding a token consists of the following steps:

1. See whether the token is expandable.
2. If the token is unexpandable, pass it to the token list currently being built, and take

on the next token.
3. If the token is expandable, replace it by its expansion. For macros without para-

meters, and a few primitive commands such as \jobname, this is indeed a simple
replacement. Usually, however, TEX needs to absorb some argument tokens from
the stream in order to be able to form the replacement of the current token. For
instance, if the token was a macro with parameters, sufficiently many tokens need
to be absorbed to form the arguments corresponding to these parameters.

4. Go on expanding, starting with the first token of the expansion.

Deciding whether a token is expandable is a simple decision. Macros and active characters,
conditionals, and a number of primitive TEX commands (see the list on page 125) are
expandable, other tokens are not. Thus the expansion processor replaces macros by their
expansion, it evaluates conditionals and eliminates any irrelevant parts of these, but tokens
such as \vskip and character tokens, including characters such as dollars and braces, are
passed untouched.

Victor Eijkhout – TEX by Topic 23

Chapter 1. The Structure of the TEX Processor

1.3.2 Special cases: \expandafter, \noexpand, and \the

As stated above, after a token has been expanded, TEX will start expanding the resulting
tokens. At first sight the \expandafter command would seem to be an exception to this
rule, because it expands only one step. What actually happens is that the sequence

\expandafter〈token1〉〈token2〉
is replaced by

〈token1〉〈expansion of token2〉
and this replacement is in fact reexamined by the expansion processor.

Real exceptions do exist, however. If the current token is the \noexpand command, the
next token is considered for the moment to be unexpandable: it is handled as if it were
\relax, and it is passed to the token list being built.

For example, in the macro definition

\edef\a{\noexpand\b}

the replacement text \noexpand\b is expanded at definition time. The expansion of \noexpand
is the next token, with a temporary meaning of \relax. Thus, when the expansion proces-
sor tackles the next token, the \b, it will consider that to be unexpandable, and just pass it
to the token list being built, which is the replacement text of the macro.

Another exception is that the tokens resulting from \the〈token variable〉 are not expanded
further if this statement occurs inside an \edef macro definition.

1.3.3 Braces in the expansion processor

Above, it was said that braces are passed as unexpandable character tokens. In general this
is true. For instance, the \romannumeral command is handled by the expansion processor;
when confronted with

\romannumeral1\number\count2 3{4 ...

TEX will expand until the brace is encountered: if \count2 has the value of zero, the result
will be the roman numeral representation of 103.

As another example,

\iftrue {\else }\fi

is handled by the expansion processor completely analogous to

\iftrue a\else b\fi

The result is a character token, independent of its category.

However, in the context of macro expansion the expansion processor will recognize braces.
First of all, a balanced pair of braces marks off a group of tokens to be passed as one
argument. If a macro has an argument

\def\macro#1{ ... }

one can call it with a single token, as in

\macro 1 \macro \$

24 Victor Eijkhout – TEX by Topic

1.4. The execution processor

or with a group of tokens, surrounded by braces

\macro {abc} \macro {d{ef}g}

Secondly, when the arguments for a macro with parameters are read, no expressions with
unbalanced braces are accepted. In

\def\a#1\stop{ ... }

the argument consists of all tokens up to the first occurrence of \stop that is not in braces:
in

\a bc{d\stop}e\stop

the argument of \a is bc{d\stop}e. Only balanced expressions are accepted here.

1.4 The execution processor
The execution processor builds lists: horizontal, vertical, and math lists. Corresponding to
these lists, it works in horizontal, vertical, or math mode. Of these three modes ‘internal’
and ‘external’ variants exist. In addition to building lists, this part of the TEX processor also
performs mode-independent processing, such as assignments.

Coming out of the expansion processor is a stream of unexpandable tokens to be processed
by the execution processor. From the point of view of the execution processor, this stream
contains two types of tokens:

• Tokens signalling an assignment (this includes macro definitions), and other to-
kens signalling actions that are independent of the mode, such as \show and
\aftergroup.

• Tokens that build lists: characters, boxes, and glue. The way they are handled
depends on the current mode.

Some objects can be used in any mode; for instance boxes can appear in horizontal, ver-
tical, and math lists. The effect of such an object will of course still depend on the mode.
Other objects are specific for one mode. For instance, characters (to be more precise: cha-
racter tokens of categories 11 and 12), are intimately connected to horizontal mode: if the
execution processor is in vertical mode when it encounters a character, it will switch to
horizontal mode.

Not all character tokens signal characters to be typeset: the execution processor can also
encounter math shift characters (by default $) and beginning/end of group characters (by
default { and }). Math shift characters let TEX enter or exit math mode, and braces let it
enter or exit a new level of grouping.

One control sequence handled by the execution processor deserves special mention: \relax.
This control sequence is not expandable, but the execution is to do nothing. Compare the
effect of \relax in

\count0=1\relax 2

with that of \empty defined by

\def\empty{}

Victor Eijkhout – TEX by Topic 25

Chapter 1. The Structure of the TEX Processor

in
\count0=1\empty 2

In the first case the expansion process that is forming the number stops at \relax and the
number 1 is assigned; in the second case \empty expands to nothing, so 12 is assigned.

1.5 The visual processor
TEX’s output processor encompasses those algorithms that are outside direct user control:
paragraph breaking, alignment, page breaking, math typesetting, and dvi file generation.
Various parameters control the operation of these parts of TEX.

Some of these algorithms return their results in a form that can be handled by the execution
processor. For instance, a paragraph that has been broken into lines is added to the main
vertical list as a sequence of horizontal boxes with intermediate glue and penalties. Also,
the page breaking algorithm stores its result in \box255, so output routines can dissect it.
On the other hand, a math formula can not be broken into pieces, and, naturally, shipping a
box to the dvi file is irreversible.

1.6 Examples
1.6.1 Skipped spaces

Skipped spaces provide an illustration of the view that TEX’s levels of processing accept
the completed input of the previous level. Consider the commands
\def\a{\penalty200}
\a 0

This is not equivalent to
\penalty200 0

which would place a penalty of 200, and typeset the digit 0. Instead it expands to
\penalty2000

because the space after \a is skipped in the input processor. Later stages of processing then
receive the sequence
\a0

1.6.2 Internal quantities and their representations

TEX uses various sorts of internal quantities, such as integers and dimensions. These inter-
nal quantities have an external representation, which is a string of characters, such as 4711
or 91.44cm.

Conversions between the internal value and the external representation take place on two
different levels, depending on what direction the conversion goes. A string of characters is
converted to an internal value in assignments such as

26 Victor Eijkhout – TEX by Topic

1.6. Examples

\pageno=12 \baselineskip=13pt

or statements such as
\vskip 5.71pt

and all of these statements are handled by the execution processor.

On the other hand, the conversion of the internal values into a representation as a string of
characters is handled by the expansion processor. For instance,
\number\pageno \romannumeral\year
\the\baselineskip

are all processed by expansion.

As a final example, suppose \count2=45, and consider the statement
\count0=1\number\count2 3

The expansion processor tackles \number\count2 to give the characters 45, and the space
after the 2 does not end the number being assigned: it only serves as a delimiter of the
number of the \count register. In the next stage of processing, the execution processor
will then see the statement
\count0=1453

and execute this.

Victor Eijkhout – TEX by Topic 27

Chapter 2

Category Codes and Internal States

When characters are read, TEX assigns them category codes. The reading mechanism has
three internal states, and transitions between these states are effected by category codes of
characters in the input. This chapter describes how TEX reads its input and how the category
codes of characters influence the reading behaviour. Spaces and line ends are discussed.
\endlinechar The character code of the end-of-line character appended to input lines.

IniTEX default: 13.
\par Command to close off a paragraph and go into vertical mode. Is generated by empty

lines.
\ignorespaces Command that reads and expands until something is encountered that is

not a 〈space token〉.
\catcode Query or set category codes.
\ifcat Test whether two characters have the same category code.
\ Control space. Insert the same amount of space that a space token would when \spacefactor =

1000.
\obeylines Macro in plain TEX to make line ends significant.
\obeyspaces Macro in plain TEX to make (most) spaces significant.

2.1 Introduction
TEX’s input processor scans input lines from a file or terminal, and makes tokens out of the
characters. The input processor can be viewed as a simple finite state automaton with three
internal states; depending on the state its scanning behaviour may differ. This automaton
will be treated here both from the point of view of the internal states and of the category
codes governing the transitions.

2.2 Initial processing
Input from a file (or from the user terminal, but this will not be mentioned specifically most
of the time) is handled one line at a time. Here follows a discussion of what exactly is an
input line for TEX.

28

2.3. Category codes

Computer systems differ with respect to the exact definition of an input line. The carriage
return/line feed sequence terminating a line is most common, but some systems use just
a line feed, and some systems with fixed record length (block) storage do not have a line
terminator at all. Therefore TEX has its own way of terminating an input line.
1. An input line is read from an input file (minus the line terminator, if any).
2. Trailing spaces are removed (this is for the systems with block storage, and it

prevents confusion because these spaces are hard to see in an editor).
3. The , by default 〈return〉 (code 13) is appended. If the value of \endlinechar is

negative or more than 255 (this was 127 in versions of TEX older than version 3;
see page 279 for more differences), no character is appended. The effect then is
the same as if the line were to end with a comment character.

Computers may also differ in the character encoding (the most common schemes are ASCII
and EBCDIC), so TEX converts the characters that are read from the file to its own character
codes. These codes are then used exclusively, so that TEX will perform the same on any
system. For more on this, see Chapter 3.

2.3 Category codes
Each of the 256 character codes (0–255) has an associated category code, though not neces-
sarily always the same one. There are 16 categories, numbered 0–15. When scanning the
input, TEX thus forms character-code–category-code pairs. The input processor sees only
these pairs; from them are formed character tokens, control sequence tokens, and parameter
tokens. These tokens are then passed to TEX’s expansion and execution processes.

A character token is a character-code–category-code pair that is passed unchanged. A con-
trol sequence token consists of one or more characters preceded by an escape character;
see below. Parameter tokens are also explained below.

This is the list of the categories, together with a brief description. More elaborate explana-
tions follow in this and later chapters.
0. Escape character; this signals the start of a control sequence. IniTEX makes the

backslash \ (code 92) an escape character.
1. Beginning of group; such a character causes TEX to enter a new level of grouping.

The plain format makes the open brace { a beginningof-group character.
2. End of group; TEX closes the current level of grouping. Plain TEX has the closing

brace } as end-of-group character.
3. Math shift; this is the opening and closing delimiter for math formulas. Plain TEX

uses the dollar sign $ for this.
4. Alignment tab; the column (row) separator in tables made with \halign (\valign).

In plain TEX this is the ampersand &.
5. End of line; a character that TEX considers to signal the end of an input line. IniTEX

assigns this code to the 〈return〉, that is, code 13. Not coincidentally, 13 is also the
value that IniTEX assigns to the \endlinechar parameter; see above.

6. Parameter character; this indicates parameters for macros. In plain TEX this is the
hash sign #.

Victor Eijkhout – TEX by Topic 29

Chapter 2. Category Codes and Internal States

7. Superscript; this precedes superscript expressions in math mode. It is also used to
denote character codes that cannot be entered in an input file; see below. In plain
TEX this is the circumflex ^.

8. Subscript; this precedes subscript expressions in math mode. In plain TEX the
underscore _ is used for this.

9. Ignored; characters of this category are removed from the input, and have therefore
no influence on further TEX processing. In plain TEX this is the 〈null〉 character,
that is, code 0.

10. Space; space characters receive special treatment. IniTEX assigns this category to
the ASCII 〈space〉 character, code 32.

11. Letter; in IniTEX only the characters a..z, A..Z are in this category. Often, macro
packages make some ‘secret’ character (for instance @) into a letter.

12. Other; IniTEX puts everything that is not in the other categories into this category.
Thus it includes, for instance, digits and punctuation.

13. Active; active characters function as a TEX command, without being preceded by
an escape character. In plain TEX this is only the tie character ~, which is defined
to produce an unbreakable space; see page 187.

14. Comment character; from a comment character onwards, TEX considers the rest of
an input line to be comment and ignores it. In IniTEX the per cent sign % is made
a comment character.

15. Invalid character; this category is for characters that should not appear in the input.
IniTEX assigns the ASCII 〈delete〉 character, code 127, to this category.

The user can change the mapping of character codes to category codes with the command
(see Chapter 36 for the explanation of concepts such as 〈equals〉):

\catcode〈number〉〈equals〉〈number〉.
In such a statement, the first number is often given in the form

‘〈character〉 or ‘\〈character〉
both of which denote the character code of the character (see pages 43 and 80).

The plain format defines \active
\chardef\active=13

so that one can write statements such as
\catcode‘\{=\active

The \chardef command is treated on pages 45 and 81.

The LATEX format has the control sequences
\def\makeatletter{\catcode‘@=11 }
\def\makeatother{\catcode‘@=12 }

in order to switch on and off the ‘secret’ character @ (see below).

The \catcode command can also be used to query category codes: in
\count255=\catcode‘\{

it yields a number, which can be assigned.

Category codes can be tested by

30 Victor Eijkhout – TEX by Topic

2.4. From characters to tokens

\ifcat〈token1〉〈token2〉
TEX expands whatever is after \ifcat until two unexpandable tokens are found; these are
then compared with respect to their category codes. Control sequence tokens are considered
to have category code 16, which makes them all equal to each other, and unequal to all
character tokens. Conditionals are treated further in Chapter 13.

2.4 From characters to tokens
The input processor of TEX scans input lines from a file or from the user terminal, and
converts the characters in the input to tokens. There are three types of tokens.

• Character tokens: any character that is passed on its own to TEX’s further levels of
processing with an appropriate category code attached.

• Control sequence tokens, of which there are two kinds: an escape character – that
is, a character of category 0 – followed by a string of ‘letters’ is lumped together
into a control word, which is a single token. An escape character followed by a
single character that is not of category 11, letter, is made into a control symbol.
If the distinction between control word and control symbol is irrelevant, both are
called control sequences.
The control symbol that results from an escape character followed \ by a space
character is called control space.

• Parameter tokens: a parameter character – that is, a character of category 6, by
default # – followed by a digit 1..9 is replaced by a parameter token. Parameter
tokens are allowed only in the context of macros (see Chapter 11).
A macro parameter character followed by another macro parameter character (not
necessarily with the same character code) is replaced by a single character token.
This token has category 6 (macro parameter), and the character code of the second
parameter character. The most common instance is of this is replacing ## by #6,
where the subscript denotes the category code.

2.5 The input processor as a finite state automaton
TEX’s input processor can be considered to be a finite state automaton with three internal
states, that is, at any moment in time it is in one of three states, and after transition to
another state there is no memory of the previous states.

2.5.1 State N: new line

State N is entered at the beginning of each new input line, and that is the only time TEX
is in this state. In state N all space tokens (that is, characters of category 10) are ignored;
an end-of-line character is converted into a \par token. All other tokens bring TEX into
state M.

Victor Eijkhout – TEX by Topic 31

Chapter 2. Category Codes and Internal States

2.5.2 State S: skipping spaces

State S is entered in any mode after a control word or control space (but after no other
control symbol), or, when in state M, after a space. In this state all subsequent spaces or
end-of-line characters in this input line are discarded.

2.5.3 State M: middle of line

By far the most common state is M, ‘middle of line’. It is entered after characters of catego-
ries 1–4, 6–8, and 11–13, and after control symbols other than control space. An end-of-line
character encountered in this state results in a space token.

2.6 Accessing the full character set
Strictly speaking, TEX’s input processor is not a finite state automaton. This is because
during the scanning of the input line all trios consisting of two equal superscript characters
(category code 7) and a subsequent character (with character code < 128) are replaced by
a single character with a character code in the range 0–127, differing by 64 from that of the
original character.

This mechanism can be used, for instance, to access positions in a font corresponding to
character codes that cannot be input, for instance because they are ASCII control characters.
The most obvious examples are the ASCII 〈return〉 and 〈delete〉 characters; the correspon-
ding positions 13 and 127 in a font are accessible as ^^M and ^^?. However, since the
category of ^^? is 15, invalid, that has to be changed before character 127 can be accessed.

In TEX3 this mechanism has been modified and extended to access 256 characters: any
quadruplet ^^xy where both x and y are lowercase hexadecimal digits 0–9, a–f, is replaced
by a character in the range 0–255, namely the character the number of which is represented
hexadecimally as xy. This imposes a slight restriction on the applicability of the earlier
mechanism: if, for instance, ^^a is typed to produce character 33, then a following 0–9,
a–f will be misunderstood.

While this process makes TEX’s input processor somewhat more powerful than a true finite
state automaton, it does not interfere with the rest of the scanning. Therefore it is concep-
tually simpler to pretend that such a replacement of triplets or quadruplets of characters,
starting with ^^, is performed in advance. In actual practice this is not possible, because an
input line may assign category code 7 to some character other than the circumflex, thereby
influencing its further processing.

2.7 Transitions between internal states
Let us now discuss the effects on the internal state of TEX’s input processor when certain
category codes are encountered in the input.

32 Victor Eijkhout – TEX by Topic

2.7. Transitions between internal states

2.7.1 0: escape character

When an escape character is encountered, TEX starts forming a control sequence token.
Three different types of control sequence can result, depending on the category code of the
character that follows the escape character.
• If the character following the escape is of category 11, letter, then TEX combines

the escape, that character and all following characters of category 11, into a control
word. After that TEX goes into state S, skipping spaces.

• With a character of category 10, space, a control symbol called control space re-
sults, and TEX goes into state S.

• With a character of any other category code a control symbol results, and TEX goes
into state M, middle of line.

The letters of a control sequence name have to be all on one line; a control sequence name
is not continued on the next line if the current line ends with a comment sign, or if (by
letting \endlinechar be outside the range 0–255) there is no terminating character.

2.7.2 1–4, 7–8, 11–13: non-blank characters

Characters of category codes 1–4, 7–8, and 11–13 are made into tokens, and TEX goes into
state M.

2.7.3 5: end of line

Upon encountering an end-of-line character, TEX discards the rest of the line, and starts
processing the next line, in state N. If the current state was N, that is, if the line so far
contained at most spaces, a \par token is inserted; if the state was M, a space token is
inserted, and in state S nothing is inserted.

Note that by ‘end-of-line character’ a character with category code 5 is meant. This is not
necessarily the \endlinechar, nor need it appear at the end of the line. See below for
further remarks on line ends.

2.7.4 6: parameter

Parameter characters – usually # – can be followed by either a digit 1..9 in the context of
macro definitions or by another parameter character. In the first case a ‘parameter token’
results, in the second case only a single parameter character is passed on as a character
token for further processing. In either case TEX goes into state M.

A parameter character can also appear on its own in an alignment preamble (see Chap-
ter 25).

2.7.5 7: superscript

A superscript character is handled like most non-blank characters, except in the case where
it is followed by a superscript character of the same character code. The process that repla-
ces these two characters plus the following character (possibly two characters in TEX3) by
another character was described above.

Victor Eijkhout – TEX by Topic 33

Chapter 2. Category Codes and Internal States

2.7.6 9: ignored character

Characters of category 9 are ignored; TEX remains in the same state.

2.7.7 10: space

A token with category code 10 – this is called a 〈space token〉, irrespective of the character
code – is ignored in states N and S (and the state does not change); in state M TEX goes
into state S, inserting a token that has category 10 and character code 32 (ASCII space), that
is, the character code of the space token may change from the character that was actually
input.

2.7.8 14: comment

A comment character causes TEX to discard the rest of the line, including the comment
character. In particular, the end-of-line character is not seen, so even if the comment was
encountered in state M, no space token is inserted.

2.7.9 15: invalid

Invalid characters cause an error message. TEX remains in the state it was in. However,
in the context of a control symbol an invalid character is acceptable. Thus \^^? does not
cause any error messages.

2.8 Letters and other characters
In most programming languages identifiers can consist of both letters and digits (and pos-
sibly some other character such as the underscore), but control sequences in TEX are only
allowed to be formed out of characters of category 11, letter. Ordinarily, the digits and
punctuation symbols have category 12, other character. However, there are contexts where
TEX itself generates a string of characters, all of which have category code 12, even if that
is not their usual category code.

This happens when the operations \string, \number, \romannumeral, \jobname, \fontname,
\meaning, and \the are used to generate a stream of character tokens. If any of the cha-
racters delivered by such a command is a space character (that is, character code 32), it
receives category code 10, space.

For the extremely rare case where a hexadecimal digit has been hidden in a control se-
quence, TEX allows A12–F12 to be hexadecimal digits, in addition to the ordinary A11–F11

(here the subscripts denote the category codes).

For example,

\string\end gives four character tokens \12e12n12d12

34 Victor Eijkhout – TEX by Topic

2.9. The \par token

Note that \12 is used in the output only because the value of \escapechar is the character
code for the backslash. Another value of \escapechar leads to another character in the
output of \string. The \string command is treated further in Chapter 3.

Spaces can wind up in control sequences:

\csname a b\endcsname

gives a control sequence token in which one of the three characters is a space. Turning this
control sequence token into a string of characters

\expandafter\string\csname a b\endcsname

gives \12a12 10b12.

As a more practical example, suppose there exists a sequence of input files file1.tex,
file2.tex, and we want to write a macro that finds the number of the input file that is
being processed. One approach would be to write

\newcount\filenumber \def\getfilenumber file#1.{\filenumber=#1 }
\expandafter\getfilenumber\jobname.

where the letters file in the parameter text of the macro (see Section 11.5) absorb that
part of the jobname, leaving the number as the sole parameter.

However, this is slightly incorrect: the letters file resulting from the \jobname command
have category code 12, instead of 11 for the ones in the definition of \getfilenumber.
This can be repaired as follows:

{\escapechar=-1
\expandafter\gdef\expandafter\getfilenumber

\string\file#1.{\filenumber=#1 }
}

Now the sequence \string\file gives the four letters f12i12l12e12; the \expandafter
commands let this be executed prior to the macro definition; the backslash is omitted be-
cause we put \escapechar=-1. Confining this value to a group makes it necessary to
use \gdef.

2.9 The \par token
TEX inserts a token into the input after encountering a character with category code 5, end
of line, in state N. It is good to realize when exactly this happens: since TEX leaves state N
when it encounters any token but a space, a line giving a \par can only contain characters
of category 10. In particular, it cannot end with a comment character. Quite often this fact
is used the other way around: if an empty line is wanted for the layout of the input one can
put a comment sign on that line.

Two consecutive empty lines generate two \par tokens. For all practical purposes this is
equivalent to one \par, because after the first one TEX enters vertical mode, and in vertical
mode a \par only exercises the page builder, and clears the paragraph shape parameters.

Victor Eijkhout – TEX by Topic 35

Chapter 2. Category Codes and Internal States

A \par is also inserted into the input when TEX sees a 〈vertical command〉 in unrestricted
horizontal mode. After the \par has been read and expanded, the vertical command is
examined anew (see Chapters 6 and 17).

The \par token may also be inserted by the \end command that finishes off the run of
TEX; see Chapter 28.

It is important to realize that TEX does what it normally does when encountering an empty
line (which is ending a paragraph) only because of the default definition of the \par token.
By redefining \par the behaviour caused by empty lines and vertical commands can be
changed completely, and interesting special effects can be achieved. In order to continue
to be able to cause the actions normally associated with \par, the synonym \endgraf is
available in the plain format. See further Chapter 17.

The \par token is not allowed to be part of a macro argument, unless the macro has been
declared to be \long. A \par in the argument of a non-\long macro prompts TEX to give
a ‘runaway argument’ message. Control sequences that have been \let to \par (such as
\endgraf) are allowed, however.

2.10 Spaces
This section treats some of the aspects of space characters and space tokens in the initial
processing stages of TEX. The topic of spacing in text typesetting is treated in Chapter 20.

2.10.1 Skipped spaces

From the discussion of the internal states of TEX’s input processor it is clear that some
spaces in the input never reach the output; in fact they never get past the input processor.
These are for instance the spaces at the beginning of an input line, and the spaces following
the one that lets TEX switch to state S.

On the other hand, line ends can generate spaces (which are not in the input) that may wind
up in the output. There is a third kind of space: the spaces that get past the input processor,
or are even generated there, but still do not wind up in the output. These are the 〈optional
spaces〉 that the syntax of TEX allows in various places.

2.10.2 Optional spaces

The syntax of TEX has the concepts of ‘optional spaces’ and ‘one optional space’:
〈one optional space〉 −→ 〈space token〉 | 〈empty〉
〈optional spaces〉 −→ 〈empty〉 | 〈space token〉〈optional spaces〉

In general, 〈one optional space〉 is allowed after numbers and glue specifications, while
〈optional spaces〉 are allowed whenever a space can occur inside a number (for example,
between a minus sign and the digits of the number) or glue specification (for example,
between plus and 1fil). Also, the definition of 〈equals〉 allows 〈optional spaces〉 before
the = sign.

Here are some examples of optional spaces.

36 Victor Eijkhout – TEX by Topic

2.10. Spaces

• A number can be delimited by 〈one optional space〉. This prevents accidents (see
Chapter 7), and it speeds up processing, as TEX can detect more easily where the
〈number〉 being read ends. Note, however, that not every ‘number’ is a 〈number〉:
for instance the 2 in \magstep2 is not a number, but the single token that is the
parameter of the \magstep macro. Thus a space or line end after this is signifi-
cant. Another example is a parameter number, for example #1: since at most nine
parameters are allowed, scanning one digit after the parameter character suffices.

• From the grammar of TEX it follows that the keywords fill and filll consist of
fil and separate l s, each of which is a keyword (see page 278 for a more elabo-
rate discussion), and hence can be followed by optional spaces. Therefore forms
such as fil L l are also valid. This is a potential source of strange accidents. In
most cases, appending a \relax token prevents such mishaps.

• The primitive command may come in handy as the final command in a macro defi-
nition. As it gobbles up optional spaces, it can be used to prevent spaces following
the closing brace of an argument from winding up in the output inadvertently. For
example, in
\def\item#1{\par\leavevmode

\llap{#1\enspace}\ignorespaces}
\item{a/}one line \item{b/} another line \item{c/}
yet another
the \ignorespaces prevents spurious spaces in the second and third item. An
empty line after \ignorespaces will still insert a \par, however.

2.10.3 Ignored and obeyed spaces

After control words spaces are ignored. This is not an instance of optional spaces, but it is
due to the fact that TEX goes into state S, skipping spaces, after control words. Similarly an
end-of-line character is skipped after a control word.

Numbers are delimited by only 〈one optional space〉, but still
a\count0=3 b gives ‘ab’,

because TEX goes into state S after the first space token. The second space is therefore
skipped in the input processor of TEX; it never becomes a space token.

Spaces are skipped furthermore when TEX is in state N, newline. When TEX is processing in
vertical mode space tokens (that is, spaces that were not skipped) are ignored. For example,
the space inserted (because of the line end) after the first box in
\par
\hbox{a}
\hbox{b}

has no effect.

Both plain TEX and LATEX define a command \obeyspaces that makes spaces significant:
after one space other spaces are no longer ignored. In both cases the basis is
\catcode‘\ =13 \def {\space}

However, there is a difference between the two cases: in plain TEX

Victor Eijkhout – TEX by Topic 37

Chapter 2. Category Codes and Internal States

\def\space{ }

while in LATEX
\def\space{\leavevmode{} }

although the macros bear other names there.

The difference between the two macros becomes apparent in the context of \obeylines:
each line end is then a \par command, implying that each next line is started in vertical
mode. An active space is expanded by the plain macro to a space token, which is ignored
in vertical mode. The active spaces in LATEX will immediately switch to horizontal mode,
so that each space is significant.

2.10.4 More ignored spaces

There are three further places where TEX will ignore space tokens.
1. When TEX is looking for an undelimited macro argument it will accept the first

token (or group) that is not a space. This is treated in Chapter 11.
2. In math mode space tokens are ignored (see Chapter 23).
3. After an alignment tab character spaces are ignored (see Chapter 25).

2.10.5 〈space token〉
Spaces are anomalous in TEX. For instance, the \string operation assigns category code 12
to all characters except spaces; they receive category 10. Also, as was said above, TEX’s in-
put processor converts (when in state M) all tokens with category code 10 into real spaces:
they get character code 32. Any character token with category 10 is called 〈space token〉.
Space tokens with character code not equal to 32 are called ‘funny spaces’ .

After giving the character Q the category code of a space character, and
using it in a definition
\catcode‘Q=10 \def\q{aQb}
we get
\show\q
macro:-> a b
because the input processor changes the character code of the funny space
in the definition.

Space tokens with character codes other than 32 can be created using, for instance, \uppercase.
However, ‘since the various forms of space tokens are almost identical in behaviour, there’s
no point dwelling on the details’; see [25] p. 377.

2.10.6 Control space

The ‘control space’ command \ contributes the amount of space that a 〈space token〉
would when the \spacefactor is 1000. A control space is not treated like a space to-
ken, or like a macro expanding to one (which is how \space is defined in plain TEX).
For instance, TEX ignores spaces at the beginning of an input line, but control space is a
〈horizontal command〉, so it makes TEX switch from vertical to horizontal mode (and insert
an indentation box). See Chapter 20 for the space factor, and chapter 6 for horizontal and
vertical modes.

38 Victor Eijkhout – TEX by Topic

2.11. More about line ends

2.10.7 ‘ ’

The explicit symbol ‘ ’ for a space is character 32 in the Computer Modern typewriter ty-
peface. However, switching to \tt is not sufficient to get spaces denoted this way, because
spaces will still receive special treatment in the input processor.

One way to let spaces be typeset by is to set

\catcode‘\ =12

TEX will then take a space as the instruction to typeset character number 32. Moreover,
subsequent spaces are not skipped, but also typeset this way: state S is only entered after a
character with category code 10. Similarly, spaces after a control sequence are made visible
by changing the category code of the space character.

2.11 More about line ends
TEX accepts lines from an input file, excluding any line terminator that may be used. Be-
cause of this, TEX’s behaviour here is not dependent on the operating system and the line
terminator it uses (CR-LF, LF, or none at all for block storage). From the input line any trai-
ling spaces are removed. The reason for this is historic; it has to do with the block storage
mode on IBM mainframe computers. For some computer-specific problems with end-of-line
characters, see [2].

A terminator character is then appended with a character code of \endlinechar, unless
this parameter has a value that is negative or more than 255. Note that this terminator
character need not have category code 5, end of line.

2.11.1 Obeylines

Every once in a while it is desirable that the line ends in the input correspond to those in
the output. The following piece of code does the trick:

\catcode‘\^^M=13 %
\def^^M{\par}%

The \endlinechar character is here made active, and its meaning becomes \par. The
comment signs prevent TEX from seeing the terminator of the lines of this definition, and
expanding it since it is active.

However, it takes some care to embed this code in a macro. The definition

\def\obeylines{\catcode‘\^^M=13 \def^^M{\par}}

will be misunderstood: TEX will discard everything after the second ^^M, because this has
category code 5. Effectively, this line is then

\def\obeylines{\catcode‘\^^M=13 \def

To remedy this, the definition itself has to be performed in a context where ^^M is an active
character:

Victor Eijkhout – TEX by Topic 39

Chapter 2. Category Codes and Internal States

{\catcode‘\^^M=13 %
\gdef\obeylines{\catcode‘\^^M=13 \def^^M{\par}}%
}

Empty lines in the input are not taken into account in this definition: these disappear, be-
cause two consecutive \par tokens are (in this case) equivalent to one. A slightly modified
definition for the line end as
\def^^M{\par\leavevmode}

remedies this: now every line end forces TEX to start a paragraph. For empty lines this will
then be an empty paragraph.

2.11.2 Changing the \endlinechar

Occasionally you may want to change the \endlinechar, or the \catcode of the ordi-
nary line terminator ^^M, for instance to obtain special effects such as macros where the
argument is terminated by the line end. See page 122 for a worked-out example.

There are a couple of traps. Consider the following:
{\catcode‘\^^M=12 \endlinechar=‘\^^J \catcode‘\^^J=5
...
... }

This causes unintended output of both character 13 (^^M) and 10 (^^J), caused by the line
terminators of the first and last line.

Terminating the first and last line with a comment works, but replacing the first line by the
two lines
{\endlinechar=‘\^^J \catcode‘\^^J=5
\catcode‘\^^M=12

is also a solution.

Of course, in many cases it is not necessary to substitute another end-of-line character;
a much simpler solution is then to put
\endlinechar=-1

which treats all lines as if they end with a comment.

2.11.3 More remarks about the end-of-line character

The character that TEX appends at the end of an input line is treated like any other character.
Usually one is not aware of this, as its category code is special, but there are a few ways to
let it be processed in an unusual way.

Terminating an input line with ^^ will (ordinarily, when \endlinechar
is 13) give ‘M’ in the output, which is the ASCII character with code 13+64.
If \^^M has been defined, terminating an input line with a backslash will
execute this command. The plain format defines
\def\^^M{\ }
which makes a ‘control return’ equivalent to a control space.

40 Victor Eijkhout – TEX by Topic

2.12. More about the input processor

2.12 More about the input processor
2.12.1 The input processor as a separate process

TEX’s levels of processing are all working at the same time and incrementally, but concep-
tually they can often be considered to be separate processes that each accept the completed
output of the previous stage. The juggling with spaces provides a nice illustration for this.

Consider the definition

\def\DoAssign{\count42=800}

and the call

\DoAssign 0

The input processor, the part of TEX that builds tokens, in scanning this call skips the space
before the zero, so the expansion of this call is

\count42=8000

It would be incorrect to reason ‘\DoAssign is read, then expanded, the space delimits the
number 800, so 800 is assigned and the zero is printed’. Note that the same would happen
if the zero appeared on the next line.

Another illustration shows that optional spaces appear in a different stage of processing
from that for skipped spaces:

\def\c.{\relax}
a\c. b

expands to

a\relax b

which gives as output

‘a b’

because spaces after the \relax control sequence are only skipped when the line is first
read, not when it is expanded. The fragment

\def\c.{\ignorespaces}
a\c. b

on the other hand, expands to

a\ignorespaces b

Executing the \ignorespaces command removes the subsequent space token, so the out-
put is

‘ab’.

In both definitions the period after \c is a delimiting token; it is used here to prevent spaces
from being skipped.

2.12.2 The input processor not as a separate process

Considering the tokenizing of TEX to be a separate process is a convenient view, but some-
times it leads to confusion. The line

Victor Eijkhout – TEX by Topic 41

Chapter 2. Category Codes and Internal States

\catcode‘\^^M=13{}

makes the line end active, and subsequently gives an ‘undefined control sequence’ error for
the line end of this line itself. Execution of the commands on the line thus influences the
scanning process of that same line.

By contrast,
\catcode‘\^^M=13

does not give an error. The reason for this is that TEX reads the line end while it is still
scanning the number 13; that is, at a time when the assignment has not been performed yet.
The line end is then converted to the optional space character delimiting the number to be
assigned.

2.12.3 Recursive invocation of the input processor

Above, the activity of replacing a parameter character plus a digit by a parameter token was
described as something similar to the lumping together of letters into a control sequence
token. Reality is somewhat more complicated than this. TEX’s token scanning mechanism
is invoked both for input from file and for input from lists of tokens such as the macro
definition. Only in the first case is the terminology of internal states applicable.

Macro parameter characters are treated the same in both cases, however. If this were not
the case it would not be possible to write things such as
\def\a{\def\b{\def\c####1{####1}}}

See page 114 for an explanation of such nested definitions.

2.13 The @ convention
Anyone who has ever browsed through either the plain format or the LATEX format will have
noticed that a lot of control sequences contain an ‘at’ sign: @. These are control sequences
that are meant to be inaccessible to the ordinary user.

Near the beginning of the format files the instruction
\catcode‘@=11

occurs, making the at sign into a letter, meaning that it can be used in control sequences.
Somewhere near the end of the format definition the at sign is made ‘other’ again:
\catcode‘@=12

Now why is it that users cannot call a control sequence with an at sign directly, although
they can call macros that contain lots of those ‘at-definitions’? The reason is that the control
sequences containing an @ are internalized by TEX at definition time, after which they are a
token, not a string of characters. Macro expansion then just inserts such tokens, and at that
time the category codes of the constituent characters do not matter any more.

42 Victor Eijkhout – TEX by Topic

Chapter 3

Characters

Internally, TEX represents characters by their (integer) character code. This chapter treats
those codes, and the commands that have access to them.
\char Explicit denotation of a character to be typeset.
\chardef Define a control sequence to be a synonym for a character code.
\accent Command to place accent characters.
\if Test equality of character codes.
\ifx Test equality of both character and category codes.
\let Define a control sequence to be a synonym of a token.
\uccode Query or set the character code that is the uppercase variant of a given code.
\lccode Query or set the character code that is the lowercase variant of a given code.
\uppercase Convert the 〈general text〉 argument to its uppercase form.
\lowercase Convert the 〈general text〉 argument to its lowercase form.
\string Convert a token to a string of one or more characters.
\escapechar Number of the character that is to be used for the escape character when

control sequences are being converted into character tokens. IniTEX default: 92 (\).

3.1 Character codes
Conceptually it is easiest to think that TEX works with characters internally, but in fact TEX
works with integers: the ‘character codes’.

The way characters are encoded in a computer may differ from system to system. Therefore
TEX uses its own scheme of character codes. Any character that is read from a file (or from
the user terminal) is converted to a character code according to the character code table.
A category code is then assigned based on this (see Chapter 2). The character code table is
based on the 7-bit ASCII table for numbers under 128 (see Chapter 38).

There is an explicit conversion between characters (better: character tokens) and character
codes using the left quote (grave, back quote) character ‘: at all places where TEX expects
a 〈number〉 you can use the left quote followed by a character token or a single-character
control sequence. Thus both \count‘a and \count‘\a are synonyms for \count97. See
also Chapter 7.

43

Chapter 3. Characters

The possibility of a single-character control sequence is necessary in certain cases such as

\catcode‘\%=11 or \def\CommentSign{\char‘\%}

which would be misunderstood if the backslash were left out. For instance
\catcode‘%=11

would consider the =11 to be a comment. Single-character control sequences can be formed
from characters with any category code.

After the conversion to character codes any connection with external representations has
disappeared. Of course, for most characters the visible output will ‘equal’ the input (that is,
an ‘a’ causes an ‘a’). There are exceptions, however, even among the common symbols. In
the Computer Modern roman fonts there are no ‘less than’ and ‘greater than’ signs, so the
input ‘<>’ will give ‘¡¿’ in the output.

In order to make TEX machine independent at the output side, the character codes are also
used in the dvi file: opcodes n = 0 . . . 127 denote simply the instruction ‘take character n
from the current font’. The complete definition of the opcodes in a dvi file can be found
in [23].

3.2 Control sequences for characters
There are a number of ways in which a control sequence can denote a character. The \char
command specifies a character to be typeset; the \let command introduces a synonym for
a character token, that is, the combination of character code and category code.

3.3 Denoting characters to be typeset: \char
Characters can be denoted numerically by, for example, \char98. This command tells
TEX to add character number 98 of the current font to the horizontal list currently under
construction.

Instead of decimal notation, it is often more convenient to use octal or hexadecimal nota-
tion. For octal the single quote is used: \char’142; hexadecimal uses the double quote:
\char"62. Note that \char’’62 is incorrect; the process that replaces two quotes by a
double quote works at a later stage of processing (the visual processor) than number scan-
ning (the execution processor).

Because of the explicit conversion to character codes by the back quote character it is also
possible to get a ‘b’ – provided that you are using a font organized a bit like the ASCII
table – with \char‘b or \char‘\b.

The \char command looks superficially a bit like the ^^ substitution mechanism (Chap-
ter 2). Both mechanisms access characters without directly denoting them. However, the
^^ mechanism operates in a very early stage of processing (in the input processor of TEX,
but before category code assignment); the \char command, on the other hand, comes in
the final stages of processing. In effect it says ‘typeset character number so-and-so’.

44 Victor Eijkhout – TEX by Topic

3.3. Denoting characters to be typeset: \char

There is a construction to let a control sequence stand for some character code: the com-
mand. The syntax of this is

\chardef〈control sequence〉〈equals〉〈number〉,

where the number can be an explicit representation or a counter value, but it can also be
a character code obtained using the left quote command (see above; the full definition
of 〈number〉 is given in Chapter 7). In the plain format the latter possibility is used in
definitions such as

\chardef\%=‘\%

which could have been given equivalently as

\chardef\%=37

After this command, the control symbol \% used on its own is a synonym for \char37,
that is, the command to typeset character 37 (usually the per cent character).

A control sequence that has been defined with a \chardef command can also be used as
a 〈number〉. This fact is used in allocation commands such as \newbox (see Chapters 7
and 31). Tokens defined with \mathchardef can also be used this way.

3.3.1 Implicit character tokens: \let

Another construction defining a control sequence to stand for (among other things) a cha-
racter is \let:

\let〈control sequence〉〈equals〉〈token〉

with a character token on the right hand side of the (optional) equals sign. The result is
called an implicit character token. (See page 117 for a further discussion of \let.)

In the plain format there are for instance synonyms for the open and close brace:

\let\bgroup={ \let\egroup=}

The resulting control sequences are called ‘implicit braces’ (see Chapter 10).

Assigning characters by \let is different from defining control sequences by \chardef,
in the sense that \let makes the control sequence stand for the combination of a character
code and category code.

As an example

\catcode‘|=2 % make the bar an end of group
\let\b=| % make \b a bar character
{\def\m{...}\b \m

gives an ‘undefined control sequence \m’ because the \b closed the group inside which \m
was defined. On the other hand,

\let\b=| % make \b a bar character
\catcode‘|=2 % make the bar character end of group
{\def\m{...}\b \m

Victor Eijkhout – TEX by Topic 45

Chapter 3. Characters

leaves one group open, and it prints a vertical bar (or whatever is in position 124 of the
current font). The first of these examples implies that even when the braces have been re-
defined (for instance into active characters for macros that format C code) the beginning-of-
group and end-of-group functionality is available through the control sequences \bgroup
and \egroup.

Here is another example to show that implicit character tokens are hard to distinguish from
real character tokens. After the above sequence

\catcode‘|=2 \let\b=|

the tests

\if\b|

and

\ifcat\b}

are both true.

Yet another example can be found in the plain format: the commands

\let\sp=^ \let\sb=_

allow people without an underscore or circumflex on their keyboard to make sub- and
superscripts in mathematics. For instance:

x\sp2\sb{ij} gives x2
ij

If a person typing in the format itself does not have these keys, some further tricks are
needed:

{\lccode‘,=94 \lccode‘.=95 \catcode‘,=7 \catcode‘.=8
\lowercase{\global\let\sp=, \global\let\sb=.}}

will do the job; see below for an explanation of lowercase codes. The ^^ method as it
was in TEX version 2 (see page 32) cannot be used here, as it would require typing two
characters that can ordinarily not be input. With the extension in TEX version 3 it would
also be possible to write

{\catcode‘\,=7
\global\let\sp=,,5e \global\let\sb=,,5f}

denoting the codes 94 and 95 hexadecimally.

Finding out just what a control sequence has been defined to be with \let can be done
using \meaning: the sequence

\let\x=3 \meaning\x

gives ‘the character 3’.

3.4 Accents
Accents can be placed by the 〈horizontal command〉 :

\accent〈8-bit number〉〈optional assignments〉〈character〉

46 Victor Eijkhout – TEX by Topic

3.5. Testing characters

where 〈character〉 is a character of category 11 or 12, a \char〈8-bit number〉 command, or
a \chardef token. If none of these four types of 〈character〉 follows, the accent is taken
to be a \char command itself; this gives an accent ‘suspended in mid-air’. Otherwise the
accent is placed on top of the following character. Font changes between the accent and the
character can be effected by the 〈optional assignments〉.

An unpleasant implication of the fact that an \accent command has to be followed by a
〈character〉 is that it is not possible to place an accent on a ligature, or two accents on top of
each other. In some languages, such as Hindi or Vietnamese, such double accents do occur.
Positioning accents on top of each other is possible, however, in math mode.

The width of a character with an accent is the same as that of the unaccented character. TEX
assumes that the accent as it appears in the font file is properly positioned for a character
that is as high as the x-height of the font; for characters with other heights it correspondin-
gly lowers or raises the accent.

No genuine under-accents exist in TEX. They are implemented as low placed over-accents.
A way of handling them more correctly would be to write a macro that measures the follo-
wing character, and raises or drops the accent accordingly. The cedilla macro, \c, in plain
TEX does something along these lines. However, it does not drop the accent for characters
with descenders.

The horizontal positioning of an accent is controlled by \fontdimen1, slant per point.
Kerns are used for the horizontal movement. Note that, although they are inserted automa-
tically, these kerns are classified as explicit kerns. Therefore they inhibit hyphenation in the
parts of the word before and after the kern.

As an example of kerning for accents, here follows the dump of a horizontal list.

\setbox0=\hbox{\it \‘l}
\showbox0

gives

\hbox(9.58334+0.0)x2.55554
.\kern -0.61803 (for accent)
.\hbox(6.94444+0.0)x5.11108, shifted -2.6389
..\tenit ^^R
.\kern -4.49306 (for accent)
.\tenit l

Note that the accent is placed first, so afterwards the italic correction of the last character
is still available.

3.5 Testing characters
Equality of character codes is tested by \if:

\if〈token1〉〈token2〉

Victor Eijkhout – TEX by Topic 47

Chapter 3. Characters

Tokens following this conditional are expanded until two unexpandable tokens are left.
The condition is then true if those tokens are character tokens with the same character
code, regardless of category code.

An unexpandable control sequence is considered to have character code 256 and category
code 16 (so that it is unequal to anything except another control sequence), except in the
case where it had been \let to a non-active character token. In that case it is considered to
have the character code and category code of that character. This was mentioned above.

The test \ifcat for category codes was mentioned in Chapter 2; the test

\ifx〈token1〉〈token2〉
can be used to test for category code and character code simultaneously. The tokens follo-
wing this test are not expanded. However, if they are macros, TEX tests their expansions for
equality.

Quantities defined by \chardef can be tested with \ifnum:

\chardef\a=‘x \chardef\b=‘y \ifnum\a=\b % is false

based on the fact (see Chapter 7) that 〈chardef token〉s can be used as numbers.

3.6 Uppercase and lowercase
3.6.1 Uppercase and lowercase codes

To each of the character codes correspond an uppercase code and a lowercase code (for
still more codes see below). These can be assigned by

\uccode〈number〉〈equals〉〈number〉
and

\lccode〈number〉〈equals〉〈number〉.
In IniTEX codes ‘a..‘z, ‘A..‘Z have uppercase code ‘A..‘Z and lowercase code ‘a..‘z.
All other character codes have both uppercase and lowercase code zero.

3.6.2 Uppercase and lowercase commands

The commands \uppercase{...} and \lowercase{...} go through their argument
lists, replacing all character codes of explicit character tokens by their uppercase and lower-
case code respectively if these are non-zero, without changing the category codes.

The argument of \uppercase and \lowercase is a 〈general text〉, which is defined as

〈general text〉 −→ 〈filler〉{〈balanced text〉〈right brace〉
(for the definition of 〈filler〉 see Chapter 36) meaning that the left brace can be implicit,
but the closing right brace must be an explicit character token with category code 2. TEX
performs expansion to find the opening brace.

Uppercasing and lowercasing are executed in the execution processor; they are not ‘macro
expansion’ activities like \number or \string. The sequence (attempting to produce \A)

48 Victor Eijkhout – TEX by Topic

3.7. Codes of a character

\expandafter\csname\uppercase{a}\endcsname

gives an error (TEX inserts an \endcsname before the \uppercase because \uppercase
is unexpandable), but
\uppercase{\csname a\endcsname}

works.

As an example of the correct use of \uppercase, here is a macro that tests if a character
is uppercase:
\def\ifIsUppercase#1{\uppercase{\if#1}#1}

The same test can be performed by \ifnum‘#1=\uccode‘#1.

Hyphenation of words starting with an uppercase character, that is, a character not equal to
its own \lccode, is subject to the \uchyph parameter: if this is positive, hyphenation of
capitalized words is allowed. See also Chapter 19.

3.6.3 Uppercase and lowercase forms of keywords

Each character in TEX keywords, such as pt, can be given in uppercase or lowercase form.
For instance, pT, Pt, pt, and PT all have the same meaning. TEX does not use the \uccode
and \lccode tables here to determine the lowercase form. Instead it converts uppercase
characters to lowercase by adding 32 – the ASCII difference between uppercase and lower-
case characters – to their character code. This has some implications for implementations
of TEX for non-roman alphabets; see page 370 of the TEX book, [25].

3.6.4 Creative use of \uppercase and \lowercase

The fact that \uppercase and \lowercase do not change category codes can sometimes
be used to create certain character-code–category-code combinations that would otherwise
be difficult to produce. See for instance the explanation of the \newif macro in Chapter 13,
and another example on page 46.

For a slightly different application, consider the problem (solved by Rainer Schöpf) of,
given a counter \newcount\mycount, writing character number \mycount to the terminal.
Here is a solution:
\lccode‘a=\mycount \chardef\terminal=16

\lowercase{\write\terminal{a}}

The \lowercase command effectively changes the argument of the \write command
from ‘a’ into whatever it should be.

3.7 Codes of a character
Each character code has a number of 〈codename〉s associated with it. These are integers in
various ranges that determine how the character is treated in various contexts, or how the
occurrence of that character changes the workings of TEX in certain contexts.

The code names are as follows:

Victor Eijkhout – TEX by Topic 49

Chapter 3. Characters

\catcode 〈4-bit number〉 (0–15); the category to which a character belongs. This is trea-
ted in Chapter 2.

\mathcode 〈15-bit number〉 (0–"7FFF) or "8000; determines how a character is treated
in math mode. See Chapter 21.

\delcode 〈27-bit number〉 (0–"7 FFF FFF); determines how a character is treated after
\left or \right in math mode. See page 192.

\sfcode integer; determines how spacing is affected after this character. See Chapter 20.
\lccode, \uccode 〈8-bit number〉 (0-255); lowercase and uppercase codes – these were

treated above.

3.8 Converting tokens into character strings
The command \string takes the next token and expands it into a string of separate cha-
racters. Thus

\tt\string\control

will give \control in the output, and

\tt\string$

will give $, but, noting that the string operation comes after the tokenizing,

\tt\string%

will not give %, because the comment sign is removed by TEX’s input processor. Therefore,
this command will ‘string’ the first token on the next line.

The \string command is executed by the expansion processor, thus it is expanded unless
explicitly inhibited (see Chapter 12).

3.8.1 Output of control sequences

In the above examples the typewriter font was selected, because the Computer Modern
roman font does not have a backslash character. However, TEX need not have used the
backslash character to display a control sequence: it uses character number \escapechar.
This same value is also used when a control sequence is output with \write, \message,
or \errmessage, and it is used in the output of \show, \showthe and \meaning. If
\escapechar is negative or more than 255, the escape character is not output; the default
value (set in IniTEX) is 92, the number of the backslash character.

For use in a \write statement the \string can in some circumstances be replaced by
\noexpand (see page 134).

3.8.2 Category codes of a \string

The characters that are the result of a \string command have category code 12, except
for any spaces in a stringed control sequence; they have category code 10. Since inside
a control sequence there are no category codes, any spaces resulting from \string are
of necessity only space characters, that is, characters with code 32. However, TEX’s input

50 Victor Eijkhout – TEX by Topic

3.8. Converting tokens into character strings

processor converts all space tokens that have a character code other than 32 into character
tokens with character code 32, so the chances are pretty slim that ‘funny spaces’ wind up
in control sequences.

Other commands with the same behaviour with respect to category codes as \string, are
\number, \romannumeral, \jobname, \fontname, \meaning, and \the.

Victor Eijkhout – TEX by Topic 51

Chapter 4

Fonts

In text mode TEX takes characters from a ‘current font’. This chapter describes how fonts
are identified to TEX, and what attributes a font can have.

\font Declare the identifying control sequence of a font.
\fontname The external name of a font.
\nullfont Name of an empty font that TEX uses in emergencies.
\hyphenchar Number of the hyphen character of a font.
\defaulthyphenchar Value of \hyphencharwhen a font is loaded. Plain TEX default: ‘\-.
\fontdimen Access various parameters of fonts.
\char47 Italic correction.
\noboundary Omit implicit boundary character.

4.1 Fonts
In TEX terminology a font is the set of characters that is contained in one external font file.
During processing, TEX decides from what font a character should be taken. This decision
is taken separately for text mode and math mode.

When TEX is processing ordinary text, characters are taken from the ‘current font’. External
font file names are coupled to control sequences by statements such as

\font\MyFont=myfont10

which makes TEX load the file myfont10.tfm. Switching the current font to the font des-
cribed in that file is then done by

\MyFont

The status of the current font can be queried: the sequence

\the\font

produces the control sequence for the current font.

Math mode completely ignores the current font. Instead it looks at the ‘current family’,
which can contain three fonts: one for text style, one for script style, and one for scriptscript
style. This is treated in Chapter 21.

52

4.2. Font declaration

See [42] for a consistent terminology of fonts and typefaces.

With ‘virtual fonts’ (see [24]) it is possible that what looks like one font to TEX resides in
more than one physical font file. See further page 263.

4.2 Font declaration
Somewhere during a run of TEX or IniTEX the coupling between an internal identifying
control sequence and the external file name of a font has to be made. The syntax of the
command for this is

\font〈control sequence〉〈equals〉〈file name〉〈at clause〉
where

〈at clause〉 −→ at 〈dimen〉 | scaled 〈number〉 | 〈optional spaces〉
Font declarations are local to a group.

By the 〈at clause〉 the user specifies that some magnified version of the font is wanted.
The 〈at clause〉 comes in two forms: if the font is given scaled f TEX multiplies all its
font dimensions for that font by f/1000; if the font has a design size dpt and the 〈at
clause〉 is at ppt TEX multiplies all font data by p/d. The presence of an 〈at clause〉makes
no difference for the external font file (the .tfm file) that TEX reads for the font; it just
multiplies the font dimensions by a constant.

After such a font declaration, using the defined control sequence will set the current font to
the font of the control sequence.

4.2.1 Fonts and tfm files

The external file needed for the font is a tfm (TEX font metrics) file, which is taken inde-
pendent of any 〈at clause〉 in the \font declaration. If the tfm file has been loaded already
(for instance by IniTEX when it constructed the format), an assignment of that font file can
be reexecuted without needing recourse to the tfm file.

Font design sizes are given in the font metrics files. The cmr10 font, for instance, has a
design size of 10 point. However, there is not much in the font that actually has a size of
10 points: the opening and closing parentheses are two examples, but capital letters are
considerably smaller.

4.2.2 Querying the current font and font names

It was already mentioned above that the control sequence which set the current font can be
retrieved by the command \the\font. This is a special case of

\the〈font〉
where

〈font〉 −→ \font | 〈fontdef token〉 | 〈family member〉
〈family member〉 −→ 〈font range〉〈4-bit number〉
〈font range〉 −→ \textfont | \scriptfont | \scriptscriptfont

Victor Eijkhout – TEX by Topic 53

Chapter 4. Fonts

A 〈fontdef token〉 is a control sequence defined by \font, or the predefined control se-
quence \nullfont. The concept of 〈family member〉 is only relevant in math mode.

Also, the external name of fonts can be retrieved:
\fontname〈font〉

gives a sequence of character tokens of category 12 (but space characters get category 10)
that spells the font file name, plus an 〈at clause〉 if applicable.

After
\font\tenroman=cmr10 \tenroman
the calls \the\font and \the\tenroman both give \tenroman. The
call \fontname\tenroman gives cmr10.

4.2.3 \nullfont

TEX always knows a font that has no characters: the \nullfont. If no font has been spe-
cified, or if in math mode a family member is needed that has not been specified, TEX will
take its characters from the nullfont. This control sequence qualifies as a 〈fontdef token〉: it
acts like any other control sequence that stands for a font; it just does not have an associated
tfm file.

4.3 Font information
During a run of TEX the main information needed about the font consists of the dimensions
of the characters. TEX finds these in the font metrics files, which usually have extension
.tfm. Such files contain
• global information: the \fontdimen parameters, and some other information,
• dimensions and the italic corrections of characters, and
• ligature and kerning programs for characters.
Also, the design size of a font is specified in the tfm file; see above. The definition of the
tfm format can be found in [23].

4.3.1 Font dimensions

Text fonts need to have at least seven \fontdimen parameters (but TEX will take zero for
unspecified parameters); math symbol and math extension fonts have more (see page 208).
For text fonts the minimal set of seven comprises the following:
1. the slant per point; this dimension is used for the proper horizontal positioning of

accents;
2. the interword space: this is used unless the user specifies an explicit \spaceskip;

see Chapter 20;
3. interword stretch: the stretch component of the interword space;
4. interword shrink: the shrink component of the interword space;
5. the x-height: the value of the 〈internal unit〉 ex, which is usually about the height

of the lowercase letter ‘x’;

54 Victor Eijkhout – TEX by Topic

4.3. Font information

6. the quad width: the value of the 〈internal unit〉 em, which is approximately the
width of the capital letter ‘M’; and

7. the extra space: the space added to the interword space at the end of sentences
(that is, when \spacefactor ≥ 2000) unless the user specifies an explicit \x-
spaceskip.

Parameters 1 and 5 are purely information about the font and there is no point in vary-
ing them. The values of other parameters can be changed in order to adjust spacing; see
Chapter 20 for examples of changing parameters 2, 3, 4, and 7.

Font dimensions can be altered in a 〈font assignment〉, which is a 〈global assignment〉 (see
page 106):

\fontdimen〈number〉〈font〉〈equals〉〈dimen〉
See above for the definition of 〈font〉.

4.3.2 Kerning

Some combinations of characters should be moved closer together than would be the case
if their bounding boxes were to be just abutted. This fine spacing is called kerning, and a
proper kerning is as essential to a font as the design of the letter shapes.

Consider as an example
‘Vo’ versus the unkerned variant ‘Vo’

Kerning in TEX is controlled by information in the tfm file, and is therefore outside the
influence of the user. The tfm file can be edited, however (see Chapter 33).

The \kern command has (almost) nothing to do with the phenomenon of kerning; it is
explained in Chapter 8.

4.3.3 Italic correction

The primitive control symbol \/ inserts the ‘italic correction’ of the previous character
or ligature. Such a correction may be necessary owing to the definition of the ‘bounding
box’ of a character. This box always has vertical sides, and the width of the character as TEX
perceives it is the distance between these sides. However, in order to achieve proper spacing
for slanted or italic typefaces, characters may very well project outside their bounding
boxes. The italic correction is then needed if such an overhanging character is followed by
a character from a non-slanting typeface.

Compare for instance
‘TEX has’ to ‘TEX has’,

where the second version was typed as
{\italic\TeX\/} has

The size of the italic correction of each character is determined by font information in the
font metrics file; for the Computer Modern fonts it is approximately half the ‘overhang’ of
the characters; see [17]. Italic correction is not the same as \fontdimen1, slant per point.
That font dimension is used only for positioning accents on top of characters.

Victor Eijkhout – TEX by Topic 55

Chapter 4. Fonts

An italic correction can only be inserted if the previous item processed by TEX was a
character or ligature. Thus the following solution for roman text inside an italic passage
does not work:
{\italic Some text {\/\roman not} emphasized}

The italic correction has no effect here, because the previous item is glue.

4.3.4 Ligatures

Replacement of character sequences by ligatures is controlled by information in the tfm
file of a font. Ligatures are formed from 〈character〉 commands: sequences such as fi are
replaced by ‘fi’ in some fonts.

Other ligatures traditionally in use are between ff, ffi, fl, and ffl; in some older works
ft and st can be found, and similarly to the fl ligature fk and fb can also occur.

Ligatures in TEX can be formed between explicit character tokens, \char commands, and
〈chardef token〉s. For example, the sequence \char‘f\char‘i is replaced by the ‘fi’ liga-
ture, if such a ligature is part of the font.

Unwanted ligatures can be suppressed in a number of ways: the unwanted ligature ‘halflife’
can for instance be prevented by

half{}life, half{l}ife, half\/life, or half\hbox{}life
but the solution using italic correction is not equivalent to the others.

4.3.5 Boundary ligatures

Each word is surrounded by a left and a right boundary character (TEX3 only). This makes
phenomena possible such as the two different sigmas in Greek: one at the end of a word,
and one for every other position. This can be realized through a ligature with the boundary
character. A \noboundary command immediately before or after a word suppresses the
boundary character at that place.

In general, the ligature mechanism has become more complicated with the transition to
TEX version 3; see [20].

56 Victor Eijkhout – TEX by Topic

Chapter 5

Boxes

The horizontal and vertical boxes of TEX are containers for pieces of horizontal and vertical
lists. Boxes can be stored in box registers. This chapter treats box registers and such aspects
of boxes as their dimensions, and the way their components are placed relative to each
other.

\hbox Construct a horizontal box.
\vbox Construct a vertical box with reference point of the last item.
\vtop Construct a vertical box with reference point of the first item.
\vcenter Construct a vertical box vertically centred on the math axis; this command can

only be used in math mode.
\vsplit Split off the top part of a vertical box.
\box Use a box register, emptying it.
\setbox Assign a box to a box register.
\copy Use a box register, but retain the contents.
\ifhbox \ifvbox Test whether a box register contains a horizontal/vertical box.
\ifvoid Test whether a box register is empty.
\newbox Allocate a new box register.
\unhbox \unvbox Unpack a box register containing a horizontal/vertical box, adding the

contents to the current horizontal/vertical list, and emptying the register.
\unhcopy \unvcopy The same as \unhbox / \unvbox, but do not empty the register.
\ht \dp \wd Height/depth/width of the box in a box register.
\boxmaxdepth Maximum allowed depth of boxes. Plain TEX default: \maxdimen.
\splitmaxdepth Maximum allowed depth of boxes generated by \vsplit.
\badness Badness of the most recently constructed box.
\hfuzz \vfuzz Excess size that TEX tolerates before it considers a horizontal/vertical

box overfull.
\hbadness \vbadness Amount of tolerance before TEX reports an underfull or overfull

horizontal/vertical box.
\overfullrule Width of the rule that is printed to indicate overfull horizontal boxes.
\hsize Line width used for text typesetting inside a vertical box.
\vsize Height of the page box.
\lastbox Register containing the last item added to the current list, if this was a box.
\raise \lower Adjust vertical positioning of a box in horizontal mode.

57

Chapter 5. Boxes

\moveleft \moveright Adjust horizontal positioning of a box in vertical mode.
\everyhbox \everyvbox Token list inserted at the start of a horizontal/vertical box.

5.1 Boxes
In this chapter we shall look at boxes. Boxes are containers for pieces of horizontal or
vertical lists. Boxes that are needed more than once can be stored in box registers.

When TEX expects a 〈box〉, any of the following forms is admissible:

• \hbox〈box specification〉{〈horizontal material〉}
• \vbox〈box specification〉{〈vertical material〉}
• \vtop〈box specification〉{〈vertical material〉}
• \box〈8-bit number〉
• \copy〈8-bit number〉
• \vsplit〈8-bit number〉to〈dimen〉
• \lastbox

A 〈box specification〉 is defined as

〈box specification〉 −→ 〈filler〉
| to 〈dimen〉〈filler〉 | spread 〈dimen〉〈filler〉

An 〈8-bit number〉 is a number in the range 0–255.

The braces surrounding box material define a group; they can be explicit characters of
categories 1 and 2 respectively, or control sequences \let to such characters; see also
below.

A 〈box〉 can in general be used in horizontal, vertical, and math mode, but see below for
the \lastbox. The connection between boxes and modes is explored further in Chapter 6.

The box produced by \vcenter – a command that is allowed only in math mode – is not a
〈box〉. For instance, it can not be assigned with \setbox; see further Chapter 23.

The \vsplit operation is treated in Chapter 27.

5.2 Box registers
There are 256 box registers, numbered 0–255. Either a box register is empty (‘void’), or it
contains a horizontal or vertical box. This section discusses specifically box registers; the
sizes of boxes, and the way material is arranged inside them, is treated below.

5.2.1 Allocation: \newbox

The plain TEX \newbox macro allocates an unused box register:

\newbox\MyBox

after which one can say

58 Victor Eijkhout – TEX by Topic

5.2. Box registers

\setbox\MyBox=...

or
\box\MyBox

and so on. Subsequent calls to this macro give subsequent box numbers; this way macro
collections can allocate their own boxes without fear of collision with other macros.

The number of the box is assigned by \chardef (see Chapter 31). This implies that \MyBox
is equivalent to, and can be used as, a 〈number〉. The control sequence \newbox is an
\outer macro. Newly allocated box registers are initially empty.

5.2.2 Usage: \setbox, \box, \copy

A register is filled by assigning a 〈box〉 to it:
\setbox〈number〉〈equals〉〈box〉

For example, the 〈box〉 can be explicit
\setbox37=\hbox{...} or \setbox37=\vbox{...}

or it can be a box register:
\setbox37=\box38

Usually, box numbers will have been assigned by a \newbox command.

The box in a box register is appended by the commands \box and \copy to whatever list
TEX is building: the call
\box38

appends box 38. To save memory space, box registers become empty by using them: TEX
assumes that after you have inserted a box by calling \boxnn in some mode, you do not
need the contents of that register any more and empties it. In case you do need the contents
of a box register more than once, you can \copy it. Calling \copynn is equivalent to
\boxnn in all respects except that the register is not cleared.

It is possible to unwrap the contents of a box register by ‘unboxing’ it using the commands
\unhbox and \unvbox, and their copying versions \unhcopy and \unvcopy. Whereas a
box can be used in any mode, the unboxing operations can only be used in the appropriate
mode, since in effect they contribute a partial horizontal or vertical list (see also Chapter 6).
See below for more information on unboxing registers.

5.2.3 Testing: \ifvoid, \ifhbox, \ifvbox

Box registers can be tested for their contents:
\ifvoid〈number〉

is true if the box register is empty. Note that an empty, or ‘void’, box register is not the
same as a register containing an empty box. An empty box is still either a horizontal or a
vertical box; a void register can be used as both.

The test
\ifhbox〈number〉

Victor Eijkhout – TEX by Topic 59

Chapter 5. Boxes

is true if the box register contains a horizontal box;

\ifvbox〈number〉
is true if the box register contains a vertical box. Both tests are false for void registers.

5.2.4 The \lastbox

When TEX has built a partial list, the last box in this list is accessible as the \lastbox.
This behaves like a box register, so you can remove the last box from the list by assigning
the \lastbox to some box register. If the last item on the current list is not a box, the
\lastbox acts like a void box register. It is not possible to get hold of the last box in the
case of the main vertical list. The \lastbox is then always void.

As an example, the statement

{\setbox0=\lastbox}

removes the last box from the current list, assigning it to box register 0. Since this assi-
gnment occurs inside a group, the register is cleared at the end of the group. At the start
of a paragraph this can be used to remove the indentation box (see Chapter 16). Another
example of \lastbox can be found on page 71.

Because the \lastbox is always empty in external vertical mode, it is not possible to get
hold of boxes that have been added to the page. However, it is possible to dissect the page
once it is in \box255, for instance doing

\vbox{\unvbox255{\setbox0=\lastbox}}

inside the output routine.

If boxes in vertical mode have been shifted by \moveright or \moveleft, or if boxes in
horizontal mode have been raised by \raise or lowered by \lower, any information about
this displacement due to such a command is lost when the \lastbox is taken from the list.

5.3 Natural dimensions of boxes
5.3.1 Dimensions of created horizontal boxes

Inside an \hbox all constituents are lined up next to each other, with their reference points
on the baseline of the box, unless they are moved explicitly in the vertical direction by
\lower or \raise.

The resulting width of the box is the sum of the widths of the components. Thus the width
of

\hbox{\hskip1cm}

is positive, and the width of

\hbox{\hskip-1cm}

is negative. By way of example,

a\hbox{\kern-1em b}--

60 Victor Eijkhout – TEX by Topic

5.3. Natural dimensions of boxes

gives as output
ab–

which shows that a horizontal box can have negative width.

The height and depth of an \hbox are the maximum amount that constituent boxes project
above and below the baseline of the box. They are non-negative when the box is created.

The commands \lower and \raise are the only possibilities for vertical movement inside
an \hbox (other than including a \vbox inside the \hbox, of course); a 〈vertical command〉
– such as \vskip – is not allowed in a horizontal box, and \par, although allowed, does
not do anything inside a horizontal box.

5.3.2 Dimensions of created vertical boxes

Inside a \vbox vertical material is lined up with the reference points on the vertical line
through the reference point of the box, unless components are moved explicitly in the
horizontal direction by \moveleft or \moveright.

The reference point of a vertical box is always located at the left boundary of the box. The
width of a vertical box is then the maximal amount that any material in the box sticks to
the right of the reference point. Material to the left of the reference point is not taken into
account in the width. Thus the result of

a\vbox{\hbox{\kern-1em b}}--

is
ab –

This should be contrasted with the above example.

The calculation of height and depth is different for vertical boxes constructed by \vbox and
\vtop. The ground rule is that a \vbox has a reference point that lies on the baseline of its
last component, and a \vtop has its reference point on the baseline of the first component.
In general, the depth (height) of a \vbox (\vtop) can be non-zero if the last (first) item is
a box or rule.

The height of a \vbox is then the sum of the heights and depths of all components except
the last, plus the height of that last component; the depth of the \vbox is the depth of its last
component. The depth of a \vtop is the sum of the depth of the first component and the
heights and depths of all subsequent material; its height is the height of the first component.

However, the actual rules are a bit more complicated when the first component of a \vtop
or the last component of a \vbox is not a box or rule. If the last component of a \vbox
is a kern or a glue, the depth of that box is zero; a \vtop’s height is zero unless its first
component is a box or rule. (Note the asymmetry in these definitions; see below for an
example illustrating this.) The depth of a \vtop, then, is equal to the total height plus
depth of all enclosed material minus the height of the \vtop.

There is a limit on the depth of vertical boxes: if the depth of a \vbox or \vtop calculated
by the above rules would exceed , the reference point of the box is moved down by the
excess amount. More precisely, the excess depth is added to the natural height of the box.

Victor Eijkhout – TEX by Topic 61

Chapter 5. Boxes

If the box had a to or spread specification, any glue is set anew to take the new height
into account.

Ordinarily, \boxmaxdepth is set to the maximum dimension possible in TEX. It is for in-
stance reduced during some of the calculations in the plain TEX output routine; see Chap-
ter 28.

5.3.3 Examples

Horizontal boxes are relatively straightforward. Their width is the distance between the
‘beginning’ and the ‘end’ of the box, and consequently the width is not necessarily positive.
With
\setbox0=\hbox{aa} \setbox1=\hbox{\copy0 \hskip-\wd0}

the \box1 has width zero;
/\box1/ gives ‘/aa/ ’

The height and depth of a horizontal box cannot be negative: in
\setbox0=\hbox{\vrule height 5pt depth 5pt}
\setbox1=\hbox{\raise 10pt \box0}

the \box1 has depth 0pt and height 15pt

Vertical boxes are more troublesome than horizontal boxes. Let us first treat their width.
After
\setbox0=\hbox{\hskip 10pt}

the box in the \box0 register has a width of 10pt. Defining
\setbox1=\vbox{\moveleft 5pt \copy0}

the \box1 will have width 5pt; material to the left of the reference point is not accounted
for in the width of a vertical box. With
\setbox2=\vbox{\moveright 5pt \copy0}

the \box2 will have width 15pt.

The depth of a \vbox is the depth of the last item if that is a box, so
\vbox{\vskip 5pt \hbox{\vrule height 5pt depth 5pt}}

has height 10pt and depth 5pt, and
\vbox{\vskip -5pt \hbox{\vrule height 5pt depth 5pt}}

has height 0pt and depth 5pt. With a glue or kern as the last item in the box, the resulting
depth is zero, so
\vbox{\hbox{\vrule height 5pt depth 5pt}\vskip 5pt}

has height 15pt and depth 0pt;
\vbox{\hbox{\vrule height 5pt depth 5pt}\vskip -5pt}

has height 5pt and depth 0pt.

The height of a \vtop behaves (almost) the same with respect to the first item of the box,
as the depth of a \vbox does with respect to the last item. Repeating the above examples
with a \vtop gives the following:

62 Victor Eijkhout – TEX by Topic

5.4. More about box dimensions

\vtop{\vskip 5pt \hbox{\vrule height 5pt depth 5pt}}

has height 0pt and depth 15pt, and
\vtop{\vskip -5pt \hbox{\vrule height 5pt depth 5pt}}

has height 0pt and depth 5pt;
\vtop{\hbox{\vrule height 5pt depth 5pt} \vskip 5pt}

has height 5pt and depth 10pt, and
\vtop{\hbox{\vrule height 5pt depth 5pt} \vskip -5pt}

has height 5pt and depth 0pt.

5.4 More about box dimensions
5.4.1 Predetermined dimensions

The size of a box can be specified in advance with a 〈box specification〉; see above for the
syntax. Any glue in the box is then set in order to reach the required size. Prescribing the
size of the box is done by

\hbox to 〈dimen〉 {...}, \vbox to 〈dimen〉 {...}
If stretchable or shrinkable glue is present in the box, it is stretched or shrunk in order to
give the box the specified size. Associated with this glue setting is a badness value (see
Chapter 8). If no stretch or shrink – whichever is necessary – is present, the resulting box
will be underfull or overfull respectively. Error reporting for over/underfull boxes is treated
below.

Another command to let a box have a size other than the natural size is
\hbox spread 〈dimen〉 {...}, \vbox spread 〈dimen〉 {...}

which tells TEX to set the glue in such a way that the size of the box is a specified amount
more than the natural size.

Box specifications for \vtop vertical boxes are somewhat difficult to interpret. TEX con-
structs a \vtop by first making a \vbox, including glue settings induced by a 〈box specification〉;
then it computes the height and depth by the above rules. Glue setting is described in Chap-
ter 8.

5.4.2 Changes to box dimensions

The dimensions of a box register are accessible by the commands \ht, \dp, and \wd; for
instance \dp13 gives the depth of box 13. However, not only can boxes be measured this
way; by assigning values to these dimensions TEX can even be fooled into thinking that a
box has a size different from its actual. However, changing the dimensions of a box does
not change anything about the contents; in particular it does not change the way the glue is
set.

Various formats use this in ‘smash’ macros: the macro defined by
\def\smash#1{{\setbox0=\hbox{#1}\dp0=0pt \ht0=0pt \box0\relax}}

Victor Eijkhout – TEX by Topic 63

Chapter 5. Boxes

places its argument but annihilates its height and depth; that is, the output does show the
whole box, but further calculations by TEX act as if the height and depth were zero.

Box dimensions can be changed only by setting them. They are 〈box dimen〉s, which can
only be set in a 〈box size assignment〉, and not, for instance changed with \advance.

Note that a 〈box size assignment〉 is a 〈global assignment〉: its effect transcends any groups
in which it occurs (see Chapter 10). Thus the output of
\setbox0=\hbox{---} {\wd0=0pt} a\box0b

is ‘a—b ’.

The limits that hold on the dimensions with which a box can be created (see above) do not
hold for explicit changes to the size of a box: the assignment \dp0=-2pt for a horizontal
box is perfectly admissible.

5.4.3 Moving boxes around

In a horizontal box all constituent elements are lined up with their reference points at the
same height as the reference point of the box. Any box inside a horizontal box can be lifted
or dropped using the macros \raise and \lower.

Similarly, in a vertical box all constituent elements are lined up with their reference points
underneath one another, in line with the reference point of the box. Boxes can now be
moved sideways by the macros \moveleft and \moveright.

Only boxes can be shifted thus; these operations cannot be applied to, for instance, charac-
ters or rules.

5.4.4 Box dimensions and box placement

TEX places the components of horizontal and vertical lists by maintaining a reference line
and a current position on that line. For horizontal lists the reference line is the baseline of
the surrounding \hbox; for vertical lists it is the vertical line through the reference point of
the surrounding \vbox.

In horizontal mode a component is placed as follows. The current position coincides initi-
ally with the reference point of the surrounding box. After that, the following actions are
carried out.
1. If the component has been shifted by \raise or \lower, shift the current position

correspondingly.
2. If the component is a horizontal box, use this algorithm recursively for its contents;

if it is a vertical box, go up by the height of this box, putting a new current position
for the enclosed vertical list there, and place its components using the algorithm
for vertical lists below.

3. Move the current position (on the reference line) to the right by the width of the
component.

For the list in a vertical box TEX’s current position is initially at the upper left corner of
that box, as explained above, and the reference line is the vertical line through that point; it

64 Victor Eijkhout – TEX by Topic

5.5. Overfull and underfull boxes

also runs through the reference point of the box. Enclosed components are then placed as
follows.

1. If a component has been shifted using \moveleft or \moveright, shift the cur-
rent position accordingly.

2. Put the component with its upper left corner at the current position.
3. If the component is a vertical box, use this algorithm recursively for its contents;

if it is a horizontal box, its reference point can be found below the current position
by the height of the box. Put the current position for that box there, and use the
above algorithm for horizontal lists.

4. Go down by the height plus depth of the box (that is, starting at the upper left
corner of the box) on the reference line, and continue processing vertically.

Note that the above processes do not describe the construction of boxes. That would (for
instance) involve for vertical boxes the insertion of baselineskip glue. Rather, it describes
the way the components of a finished box are arranged in the output.

5.4.5 Boxes and negative glue

Sometimes it is useful to have boxes overlapping instead of line up. An easy way to do this
is to use negative glue. In horizontal mode

{\dimen0=\wd8 \box8 \kern-\dimen0}

places box 8 without moving the current location.

More versatile are the macros \llap and \rlap, defined as

\def\llap#1{\hbox to 0pt{\hss #1}}

and

\def\rlap#1{\hbox to 0pt{#1\hss}}

that allow material to protrude left or right from the current location. The \hss glue is equi-
valent to \hskip 0pt plus 1fil minus 1fil, which absorbs any positive or negative
width of the argument of \llap or \rlap.

The sequence
\llap{\hbox to 10pt{a\hfil}}
is effectively the same as
\hbox{\hskip-10pt \hbox to 10pt{a\hfil}}
which has a total width of 0pt.

5.5 Overfull and underfull boxes
If a box has a size specification TEX will stretch or shrink glue in the box. For glue with only
finite stretch or shrink components the badness (see Chapter 19) of stretching or shrinking
is computed. In TEX version 3 the badness of the box most recently constructed is available
for inspection by the user through the \badness parameter. Values for badness range 0–
10 000, but if the box is overfull it is 1 000 000.

Victor Eijkhout – TEX by Topic 65

Chapter 5. Boxes

When TEX considers the badness too large, it gives a diagnostic message. Let us first con-
sider error reporting for horizontal boxes.

Horizontal boxes of which the glue has to stretch are never reported if \hbadness ≥
10 000; otherwise TEX reports them as ‘underfull’ if their badness is more than \hbadness.

Glue shrinking can lead to ‘overfull’ boxes: a box is called overfull if the available shrink
is less than the shrink necessary to meet the box specification. An overfull box is only
reported if the difference in shrink is more than \hfuzz, or if \hbadness < 100 (and it
turns out that using all available shrinkability has badness 100).

Setting \hfuzz=1pt will let TEX ignore boxes that can not shrink enough
if they lack less than 1pt. In
\hbox to 1pt{\hskip3pt minus .5pt}
\hbox to 1pt{\hskip3pt minus 1.5pt}
only the first box will give an error message: it is 1.5pt too big, whereas
the second lacks .5pt which is less than \hfuzz.

Also, boxes that shrink but that are not overfull can be reported: if a box is ‘tight’, that is,
if it uses at least half its shrinkability, TEX reports this fact if the computed badness (which
is between 13 and 100) is more than \hbadness.

For horizontal and vertical boxes this error reporting is almost the same, with parameters
\vbadness and \vfuzz. The difference is that for horizontal overfull boxes TEX will draw
a rule to the right of the box that has the same height as the box, and width \overfullrule.
No overfull rule ensues if the \tabskip glue in an \halign cannot be shrunk enough.

5.6 Opening and closing boxes
The opening and closing braces of a box can be either explicit, that is, character tokens of
category 1 and 2, or implicit, a control sequence \let to such a character. After the ope-
ning brace the \everyhbox or \everyvbox tokens are inserted. If this box appeared in a
\setbox assignment any \afterassignment token is inserted even before the ‘everybox’
tokens.

\everyhbox{b}
\afterassignment a
\setbox0=\hbox{c}
\showbox0
gives
> \box0=
\hbox(6.94444+0.0)x15.27782
.\tenrm a
.\tenrm b
.\kern0.27779
.\tenrm c

Implicit braces can be used to let a box be opened or closed by a macro, for example:

66 Victor Eijkhout – TEX by Topic

5.7. Unboxing

\def\openbox#1{\setbox#1=\hbox\bgroup}
\def\closebox#1{\egroup\DoSomethingWithBox#1}
\openbox0 ... \closebox0

This mechanism can be used to scoop up paragraphs:
\everypar{\setbox\parbox=

\vbox\bgroup
\everypar{}
\def\par{\egroup\UseBox\parbox}}

Here the \everypar opens the box and lets the text be set in the box: starting for instance
Begin a text ...

gives the equivalent of
\setbox\parbox=\vbox{Begin a text ...

Inside the box \par has been redefined, so
... a text ends.\par

is equivalent to
... a text ends.}\Usebox\parbox

In this example, the \UseBox command can only treat the box as a whole; if the elements
of the box should somehow be treated separately another approach is necessary. In
\everypar{\setbox\parbox=
\vbox\bgroup\everypar{}%

\def\par{\endgraf\HandleLines
\egroup\box\parbox}}

\def\HandleLines{ ... \lastbox ... }

the macro \HandleLines can have access to successive elements from the vertical list of
the paragraph. See also the example on page 71.

5.7 Unboxing
Boxes can be unwrapped by the commands \unhbox and \unvbox, and by their copy-
ing versions \unhcopy and \unvcopy. These are horizontal and vertical commands (see
Chapter 6), considering that in effect they contribute a partial horizontal or vertical list. It is
not possible to \unhbox a register containing a \vbox or vice versa, but a void box register
can both be \unhboxed and \unvboxed.

Unboxing takes the contents of a box in a box register and appends them to the surrounding
list; any glue can then be set anew. Thus
\setbox0=\hbox to 1cm{\hfil} \hbox to 2cm{\unhbox0}

is completely equivalent to
\hbox to 2cm{\hfil}

and not to
\hbox to 2cm{\kern1cm}

Victor Eijkhout – TEX by Topic 67

Chapter 5. Boxes

The intrinsically horizontal nature of \unhbox is used to define
\def\leavevmode{\unhbox\voidb@x}

This command switches from vertical mode to horizontal without adding anything to the
horizontal list. However, the subsequent \indent caused by this transition adds an inden-
tation box. In horizontal mode the \leavevmode command has no effect. Note that here it
is not necessary to use \unhcopy, because the register is empty anyhow.

Beware of the following subtlety: unboxing in vertical mode does not add interline glue
between the box contents and any preceding item. Also, the value of \prevdepth is not
changed, so glue between the box contents and any following item will occur only if there
was something preceding the box; interline glue will be based on the depth of that preceding
item. Similarly, unboxing in horizontal mode does not influence the \spacefactor.

5.8 Text in boxes
Both horizontal and vertical boxes can contain text. However, the way text is treated differs.
In horizontal boxes the text is placed in one straight line, and the width of the box is
in principle the natural width of the text (and other items) contained in it. No 〈vertical
command〉s are allowed inside a horizontal box, and \par does nothing in this case.

For vertical boxes the situation is radically different. As soon as a character, or any other
〈horizontal command〉 (see page 74), is encountered in a vertical box, TEX starts building
a paragraph in unrestricted horizontal mode, that is, just as if the paragraph were directly
part of the page. At the occurrence of a 〈vertical command〉 (see page 74), or at the end
of the box, the paragraph is broken into lines using the current values of parameters such
as \hsize.

Thus
\hbox to 3cm{\vbox{some reasonably long text}}

will not give a paragraph of width 3 centimetres (it gives an overfull horizontal box if
\hsize > 3cm). However,
\vbox{\hsize=3cm some reasonably long text}

will be 3 centimetres wide.

A paragraph of text inside a vertical box is broken into lines, which are packed in horizontal
boxes. These boxes are then stacked in internal vertical mode, possibly with \baselineskip
and \lineskip separating them (this is treated in Chapter 15). This process is also used
for text on the page; the boxes are then stacked in outer vertical mode.

If the internal vertical list is empty, no \parskip glue is added at the start of a paragraph.

Because text in a horizontal box is not broken into lines, there is a further difference bet-
ween text in restricted and unrestricted horizontal mode. In restricted horizontal mode no
discretionary nodes and whatsit items changing the value of the current language are inser-
ted. This may give problems if the text is subsequently unboxed to form part of a paragraph.

See Chapter 19 for an explanation of these items, and [7] for a way around this problem.

68 Victor Eijkhout – TEX by Topic

5.9. Assorted remarks

5.9 Assorted remarks
5.9.1 Forgetting the \box

After \newcount\foo, one can use \foo on its own to get the \foo counter. For boxes,
however, one has to use \box\foo to get the \foo box. The reason for this is that there
exists no separate \boxdef command, so \chardef is used (see Chapter 31).

Suppose \newbox\foo allocates box register 25; then typing \foo is
equivalent to typing \char25.

5.9.2 Special-purpose boxes

Some box registers have a special purpose:

• \box255 is by used TEX internally to give the page to the output routine.
• \voidb@x is the number of a box register allocated in plain.tex; it is supposed

to be empty always. It is used in the macro \leavevmode and others.
• when a new \insert is created with the plain TEX \newinsert macro, a \count,

\dimen, \skip, and \box all with the same number are reserved for that insert.
The numbers for these registers count down from 254.

5.9.3 The height of a vertical box in horizontal mode

In horizontal mode a vertical box is placed with its reference point aligned vertically with
the reference point of the surrounding box. TEX then traverses its contents starting at the
left upper corner; that is, the point that lies above the reference point by a distance of the
height of the box. Changing the height of the box implies then that the contents of the box
are placed at a different height.

Consider as an example

\hbox{a\setbox0=\vbox{\hbox{b}}\box0 c}

which gives

abc

and

\hbox{a\setbox0=\vbox{\hbox{b}}\ht0=0cm \box0 c}

which gives

a
b

c

By contrast, changing the width of a box placed in vertical mode has no effect on its place-
ment.

5.9.4 More subtleties with vertical boxes

Since there are two kinds of vertical boxes, the \vbox and the \vtop, using these two kinds
nested may lead to confusing results. For instance,

\vtop{\vbox{...}}

Victor Eijkhout – TEX by Topic 69

Chapter 5. Boxes

is completely equivalent to just

\vbox{...}

It was stated above that the depth of a \vbox is zero if the last item is a kern or glue, and
the height of a \vtop is zero unless the first item in it is a box. The above examples used a
kern for that first or last item, but if, in the case of a \vtop, this item is not a glue or kern,
one is apt to overlook the effect that it has on the surrounding box. For instance,

\vtop{\write16{...}...}

has zero height, because the write instruction is packed into a ‘whatsit’ item that is placed
on the current, that is, the vertical, list. The remedy here is

\vtop{\leavevmode\write16{...}...}

which puts the whatsit in the beginning of the paragraph, instead of above it.

Placement of items in a vertical list is sometimes a bit tricky. There is for instance a diffe-
rence between how vertical and horizontal boxes are treated in a vertical list. Consider the
following examples. After \offinterlineskip the first example

\vbox{\hbox{a}
\setbox0=\vbox{\hbox{(}}
\ht0=0pt \dp0=0pt \box0
\hbox{ b}}

gives
a
(b

while a slight variant

\vbox{\hbox{a}
\setbox0=\hbox{(}
\ht0=0pt \dp0=0pt \box0
\hbox{ b}}

gives
a(
b

The difference is caused by the fact that horizontal boxes are placed with respect to their
reference point, but vertical boxes with respect to their upper left corner.

5.9.5 Hanging the \lastbox back in the list

You can pick the last box off a vertical list that has been compiled in (internal) vertical
mode. However, if you try to hang it back in the list the vertical spacing may go haywire.
If you just hang it back,

\setbox\tmpbox=\lastbox
\usethetmpbox \box\tmpbox

baselineskip glue is added a second time. If you ‘unskip’ prior to hanging the box back,

\setbox\tmpbox=\lastbox \unskip
\usethetmpbox \box\tmpbox

70 Victor Eijkhout – TEX by Topic

5.9. Assorted remarks

things go wrong in a more subtle way. The 〈internal dimen〉 \prevdepth (which controls
interline glue; see Chapter 15) will have a value based on the last box, but what you need
for the proper interline glue is a depth based on one box earlier. The solution is not to
unskip, but to specify \nointerlineskip:
\setbox\tmpbox=\lastbox
\usethetmpbox \nointerlineskip \box\tmpbox

5.9.6 Dissecting paragraphs with \lastbox

Repeatedly applying \last... and \un... macros can be used to take a paragraph apart.
Here is an example of that.

In typesetting advertisement copy, a way of justifying paragraphs has become popular
in recent years that is somewhere between flushright and raggedright setting. Lines that
would stretch beyond certain limits are set with their glue at natural width. This paragraph
exemplifies this procedure; the macros follow next.
\newbox\linebox \newbox\snapbox
\def\eatlines{

\setbox\linebox\lastbox % check the last line
\ifvoid\linebox
\else % if it’s not empty
\unskip\unpenalty % take whatever is
{\eatlines} % above it;

% collapse the line
\setbox\snapbox\hbox{\unhcopy\linebox}

% depending on the difference
\ifdim\wd\snapbox<.98\wd\linebox

\box\snapbox % take the one or the other,
\else \box\linebox \fi
\fi}

This macro can be called as
\vbox{ ... some text ... \par\eatlines}

or it can be inserted automatically with \everypar; see [10].

In the macro \eatlines, the \lastbox is taken from a vertical list. If the list is empty
the last box will test true on \ifvoid. These boxes containing lines from a paragraph are
actually horizontal boxes: the test \ifhbox applied to them would give a true result.

Victor Eijkhout – TEX by Topic 71

Chapter 6

Horizontal and Vertical Mode

At any point in its processing TEX is in some mode. There are six modes, divided in three
categories:

1. horizontal mode and restricted horizontal mode,
2. vertical mode and internal vertical mode, and
3. math mode and display math mode.

The math modes will be treated elsewhere (see page 201). Here we shall look at the ho-
rizontal and vertical modes, the kinds of objects that can occur in the corresponding lists,
and the commands that are exclusive for one mode or the other.

\ifhmode Test whether the current mode is (possibly restricted) horizontal mode.
\ifvmode Test whether the current mode is (possibly internal) vertical mode.
\ifinner Test whether the current mode is an internal mode.
\vadjust Specify vertical material for the enclosing vertical list while in horizontal mode.
\showlists Write to the log file the contents of the partial lists currently being built in

all modes.

6.1 Horizontal and vertical mode
When not typesetting mathematics, TEX is in horizontal or vertical mode, building ho-
rizontal or vertical lists respectively. Horizontal mode is typically used to make lines of
text; vertical mode is typically used to stack the lines of a paragraph on top of each other.
Note that these modes are different from the internal states of TEX’s input processor (see
page 31).

6.1.1 Horizontal mode

The main activity in horizontal mode is building lines of text. Text on the page and text in
a \vbox or \vtop is built in horizontal mode (this might be called ‘paragraph mode’); if
the text is in an \hbox there is only one line of text, and the corresponding mode is the
restricted horizontal mode.

72

6.2. Horizontal and vertical commands

In horizontal mode all material is added to a horizontal list. If this list is built in unrestricted
horizontal mode, it will later be broken into lines and added to the surrounding vertical list.

Each element of a horizontal list is one of the following:
• a box (a character, ligature, \vrule, or a 〈box〉),
• a discretionary break,
• a whatsit (see Chapter 30),
• vertical material enclosed in \mark, \vadjust, or \insert,
• glue or leaders, a kern, a penalty, or a math-on/off item.
The items in the last point are all discardable. Discardable items are called that, because
they disappear in a break. Breaking of horizontal lists is treated in Chapter 19.

6.1.2 Vertical mode

Vertical mode can be used to stack items on top of one another. Most of the time, these
items are boxes containing the lines of paragraphs.

Stacking material can take place inside a vertical box, but the items that are stacked can
also appear by themselves on the page. In the latter case TEX is in vertical mode; in the
former case, inside a vertical box, TEX operates in internal vertical mode.

In vertical mode all material is added to a vertical list. If this list is built in external vertical
mode, it will later be broken when pages are formed.

Each element of a vertical list is one of the following:
• a box (a horizontal or vertical box or an \hrule),
• a whatsit,
• a mark,
• glue or leaders, a kern, or a penalty.
The items in the last point are all discardable. Breaking of vertical lists is treated in Chap-
ter 27.

There are a few exceptional conditions at the beginning of a vertical list: the value of
\prevdepth is set to -1000pt. Furthermore, no \parskip glue is added at the top of an
internal vertical list; at the top of the main vertical list (the top of the ‘current page’) no
glue or other discardable items are added, and \topskip glue is added when the first box
is placed on this list (see Chapters 26 and 27).

6.2 Horizontal and vertical commands
Some commands are so intrinsically horizontal or vertical in nature that they force TEX to
go into that mode, if possible. A command that forces TEX into horizontal mode is called a
〈horizontal command〉; similarly a command that forces TEX into vertical mode is called a
〈vertical command〉.

However, not all transitions are possible: TEX can switch from both vertical modes to (un-
restricted) horizontal mode and back through horizontal and vertical commands, but no

Victor Eijkhout – TEX by Topic 73

Chapter 6. Horizontal and Vertical Mode

transitions to or from restricted horizontal mode are possible (other than by enclosing ho-
rizontal boxes in vertical boxes or the other way around). A vertical command in restricted
horizontal mode thus gives an error; the \par command in restricted horizontal mode has
no effect.

The horizontal commands are the following:

• any 〈letter〉, 〈otherchar〉, \char, a control sequence defined by \chardef, or
\noboundary;

• \accent, \discretionary, the discretionary hyphen \- and control space \ ;
• \unhbox and \unhcopy;
• \vrule and the 〈horizontal skip〉 commands \hskip, \hfil, \hfill, \hss, and

\hfilneg;
• \valign;
• math shift ($).

The vertical commands are the following:

• \unvbox and \unvcopy;
• \hrule and the 〈vertical skip〉 commands \vskip, \vfil, \vfill, \vss, and

\vfilneg;
• \halign;
• \end and \dump.

Note that the vertical commands do not include \par; nor are \indent and \noindent
horizontal commands.

The connection between boxes and modes is explored below; see Chapter 9 for more on
the connection between rules and modes.

6.3 The internal modes
Restricted horizontal mode and internal vertical mode are the variants of horizontal mode
and vertical mode that hold inside an \hbox and \vbox (or \vtop or \vcenter) respec-
tively. However, restricted horizontal mode is rather more restricted in nature than internal
vertical mode. The third internal mode is non-display math mode (see Chapter 23).

6.3.1 Restricted horizontal mode

The main difference between restricted horizontal mode, the mode in an \hbox, and unre-
stricted horizontal mode, the mode in which paragraphs in vertical boxes and on the page
are built, is that you cannot break out of restricted horizontal mode: \par does nothing in
this mode. Furthermore, a 〈vertical command〉 in restricted horizontal mode gives an error.
In unrestricted horizontal mode it would cause a \par token to be inserted and vertical
mode to be entered (see also Chapter 17).

74 Victor Eijkhout – TEX by Topic

6.4. Boxes and modes

6.3.2 Internal vertical mode

Internal vertical mode, the vertical mode inside a \vbox, is a lot like external vertical mode,
the mode in which pages are built. A 〈horizontal command〉 in internal vertical mode, for
instance, is perfectly valid: TEX then starts building a paragraph in unrestricted horizontal
mode.

One difference is that the commands \unskip and \unkern have no effect in external
vertical mode, and \lastbox is always empty in external vertical mode. See further pages
60 and 96.

The entries of alignments (see Chapter 25) are processed in internal modes: restricted ho-
rizontal mode for the entries of an \halign, and internal vertical mode for the entries of
a \valign. The material in \vadjust and \insert items is also processed in internal
vertical mode; furthermore, TEX enters this mode when processing the \output token list.

The commands \end and \dump (the latter exists only in IniTEX) are not allowed in internal
vertical mode; furthermore, \dump is not allowed inside a group (see Chapter 33).

6.4 Boxes and modes
There are horizontal and vertical boxes, and there is horizontal and vertical mode. Not
surprisingly, there is a connection between the boxes and the modes. One can ask about
this connection in two ways.

6.4.1 What box do you use in what mode?

This is the wrong question. Both horizontal and vertical boxes can be used in both hori-
zontal and vertical mode. Their placement is determined by the prevailing mode at that
moment.

6.4.2 What mode holds in what box?

This is the right question. When an \hbox starts, TEX is in restricted horizontal mode. Thus
everything in a horizontal box is lined up horizontally.

When a \vbox is started, TEX is in internal vertical mode. Boxes of both kinds and other
items are then stacked on top of each other.

6.4.3 Mode-dependent behaviour of boxes

Any 〈box〉 (see Chapter 5 for the full definition) can be used in horizontal, vertical, and
math mode. Unboxing commands, however, are specific for horizontal or vertical mode.
Both \unhbox and \unhcopy are 〈horizontal command〉s, so they can make TEX switch
from vertical to horizontal mode; both \unvbox and \unvcopy are 〈vertical command〉s,
so they can make TEX switch from horizontal to vertical mode.

Victor Eijkhout – TEX by Topic 75

Chapter 6. Horizontal and Vertical Mode

In horizontal mode the \spacefactor is set to 1000 after a box has been placed. In verti-
cal mode the \prevdepth is set to the depth of the box placed. Neither statement holds for
unboxing commands: after an \unhbox or \unhcopy the spacefactor is not altered, and af-
ter \unvbox or \unvcopy the \prevdepth remains unchanged. After all, these commands
do not add a box, but a piece of a (horizontal or vertical) list.

The operations \raise and \lower can only be applied to a box in horizontal mode;
similarly, \moveleft and \moveright can only be applied in vertical mode.

6.5 Modes and glue
Both in horizontal and vertical mode TEX can insert glue items the size of which is deter-
mined by the preceding object in the list.

For horizontal mode the amount of glue that is inserted for a space token depends on the
\spacefactor of the previous object in the list. This is treated in Chapter 20.

In vertical mode TEX inserts glue to keep boxes at a certain distance from each other. This
glue is influenced by the height of the current item and the depth of the previous one. The
depth of items is recorded in the \prevdepth parameter (see Chapter 15).

The two quantities \prevdepth and \spacefactor use the same internal register of TEX.
Thus the \prevdepth can be used or asked only in vertical mode, and the \spacefactor
only in horizontal mode.

6.6 Migrating material
The three control sequences \insert, \mark, and \vadjust can be given in a paragraph
(the first two can also occur in vertical mode) to specify material that will wind up on the
surrounding vertical list. Note that this need not be the main vertical list: it can be a vertical
box containing a paragraph of text. In this case a \mark or \insert command will not
reach the page breaking algorithm.

When several migrating items are specified in a certain line of text, their left-to-right order
is preserved when they are placed on the surrounding vertical list. These items are placed
directly after the horizontal box containing the line of text in which they were specified:
they come before any penalty or glue items that are automatically inserted (see page 178).

6.6.1 \vadjust

The command
\vadjust〈filler〉{〈vertical mode material〉}

is only allowed in horizontal and math modes (but it is not a 〈horizontal command〉). Ver-
tical mode material specified by \vadjust is moved from the horizontal list in which the
command is given to the surrounding vertical list, directly after the box in which it occur-
red.

76 Victor Eijkhout – TEX by Topic

6.7. Testing modes

In the current line a \vadjust item was placed to put the bullet in the margin.•
Any vertical material in a \vadjust item is processed in internal vertical mode, even
though it will wind up on the main vertical list. For instance, the \ifinner test is true in a
\vadjust, and at the start of the vertical material \prevdepth=-1000pt.

6.7 Testing modes
The three conditionals \ifhmode, \ifvmode, and \ifinner can distinguish between the
four modes of TEX that are not math modes. The \ifinner test is true if TEX is in restric-
ted horizontal mode or internal vertical mode (or in non-display math mode). Exceptional
condition: during a \write TEX is in a ‘no mode’ state. The tests \ifhmode, \ifvmode,
and \ifmmode are then all false.

Inspection of all current lists, including the ‘recent contributions’ (see Chapter 27), is pos-
sible through the command \showlists. This command writes to the log file the contents
of all lists that are being built at the moment the command is given.

Consider the example
a\hfil\break b\par
c\hfill\break d
\hbox{e\vbox{f\showlists

Here the first paragraph has been broken into two lines, and these have been added to the
current page. The second paragraph has not been concluded or broken into lines.

The log file shows the following. TEX was busy building a paragraph (starting with an
indentation box 20pt wide):
horizontal mode entered at line 3
\hbox(0.0+0.0)x20.0
\tenrm f
spacefactor 1000

This paragraph was inside a vertical box:
internal vertical mode entered at line 3
prevdepth ignored

The vertical box was in a horizontal box,
restricted horizontal mode entered at line 3
\tenrm e
spacefactor 1000

which was part of an as-yet unfinished paragraph:
horizontal mode entered at line 2
\hbox(0.0+0.0)x20.0
\tenrm c
\glue 0.0 plus 1.0fill
\penalty -10000
\tenrm d

Victor Eijkhout – TEX by Topic 77

Chapter 6. Horizontal and Vertical Mode

etc.
spacefactor 1000

Note how the infinite glue and the \break penalty are still part of the horizontal list.

Finally, the first paragraph has been broken into lines and added to the current page:
vertical mode entered at line 0
current page:
\glue(\topskip) 5.69446
\hbox(4.30554+0.0)x469.75499, glue set 444.75497fil
.\hbox(0.0+0.0)x20.0
.\tenrm a
.\glue 0.0 plus 1.0fil
.\penalty -10000
.\glue(\rightskip) 0.0
\penalty 300
\glue(\baselineskip) 5.05556
\hbox(6.94444+0.0)x469.75499, glue set 464.19943fil
.\tenrm b
.\penalty 10000
.\glue(\parfillskip) 0.0 plus 1.0fil
.\glue(\rightskip) 0.0
etc.
total height 22.0 plus 1.0
goal height 643.20255
prevdepth 0.0

78 Victor Eijkhout – TEX by Topic

Chapter 7

Numbers

In this chapter integers and their denotations will be treated, the conversions that are possi-
ble either way, allocation and use of \count registers, and arithmetic with integers.
\number Convert a 〈number〉 to decimal representation.
\romannumeral Convert a positive 〈number〉 to lowercase roman representation.
\ifnum Test relations between numbers.
\ifodd Test whether a number is odd.
\ifcase Enumerated case statement.
\count Prefix for count registers.
\countdef Define a control sequence to be a synonym for a \count register.
\newcount Allocate an unused \count register.
\advance Arithmetic command to add to or subtract from a 〈numeric variable〉.
\multiply Arithmetic command to multiply a 〈numeric variable〉.
\divide Arithmetic command to divide a 〈numeric variable〉.

7.1 Numbers and 〈number〉s
An important part of the grammar of TEX is the rigorous definition of a 〈number〉, the
syntactic entity that TEX expects when semantically an integer is expected. This definition
will take the largest part of this chapter. Towards the end, \count registers, arithmetic, and
tests for numbers are treated.

For clarity of discussion a distinction will be made here between integers and numbers,
but note that a 〈number〉 can be both an ‘integer’ and a ‘number’. ‘Integer’ will be taken
to denote a mathematical number: a quantity that can be added or multiplied. ‘Number’
will be taken to refer to the printed representation of an integer: a string of digits, in other
words.

7.2 Integers
Quite a few different sorts of objects can function as integers in TEX. In this section they
will all be treated, accompanied by the relevant lines from the grammar of TEX.

79

Chapter 7. Numbers

First of all, an integer can be positive or negative:

〈number〉 −→ 〈optional signs〉〈unsigned number〉
〈optional signs〉 −→ 〈optional spaces〉
| 〈optional signs〉〈plus or minus〉〈optional spaces〉

A first possibility for an unsigned integer is a string of digits in decimal, octal, or hexade-
cimal notation. Together with the alphabetic constants these will be named here 〈integer
denotation〉. Another possibility for an integer is an internal integer quantity, an 〈internal
integer〉; together with the denotations these form the 〈normal integer〉s. Lastly an integer
can be a 〈coerced integer〉: an internal 〈dimen〉 or 〈glue〉 quantity that is converted to an
integer value.

〈unsigned number〉 −→ 〈normal integer〉 | 〈coerced integer〉
〈normal integer〉 −→ 〈integer denotation〉 | 〈internal integer〉
〈coerced integer〉 −→ 〈internal dimen〉 | 〈internal glue〉

All of these possibilities will be treated in sequence.

7.2.1 Denotations: integers

Anything that looks like a number can be used as a 〈number〉: thus 42 is a number. However,
bases other than decimal can also be used:

’123

is the octal notation for 1× 82 + 2× 81 + 3× 80 = 83, and

"123

is the hexadecimal notation for 1× 162 + 2× 161 + 3× 160 = 291.

〈integer denotation〉 −→ 〈integer constant〉〈one optional space〉
| ’〈octal constant〉〈one optional space〉
| "〈hexadecimal constant〉〈one optional space〉

The octal digits are 0–7; a digit 8 or 9 following an octal denotation is not part of the
number: after

\count0=’078

the \count0 will have the value 7, and the digit 8 is typeset.

The hexadecimal digits are 0–9, A–F, where the A–F can have category code 11 or 12. The
latter has a somewhat far-fetched justification: the characters resulting from a \string
operation have category code 12. Lowercase a–f are not hexadecimal digits, although (in
TEX3) they are used for hexadecimal notation in the ‘circumflex method’ for accessing all
character codes (see Chapter 3).

7.2.2 Denotations: characters

A character token is a pair consisting of a character code, which is a number in the range
0–255, and a category code. Both of these codes are accessible, and can be used as a
〈number〉.

80 Victor Eijkhout – TEX by Topic

7.2. Integers

The character code of a character token, or of a single letter control sequence, is accessible
through the left quote command: both ‘a and ‘\a denote the character code of a, which
can be used as an integer.

〈integer denotation〉 −→ ‘〈character token〉〈one optional space〉
In order to emphasize that accessing the character code is in a sense using a denotation,
the syntax of TEX allows an optional space after such a ‘character constant’. The left quote
must have category 12.

7.2.3 Internal integers

The class of 〈internal integers〉 can be split into five parts. The 〈codename〉s and 〈special
integer〉s will be treated separately below; furthermore, there are the following.
• The contents of \count registers; either explicitly used by writing for instance

\count23, or by referring to such a register by means of a control sequence that
was defined by \countdef: after
\countdef\MyCount=23
\MyCount is called a 〈countdef token〉, and it is fully equivalent to \count23.

• All parameters of TEX that hold integer values; this includes obvious ones such as
\linepenalty, but also parameters such as \hyphenchar〈font〉 and \parshape
(if a paragraph shape has been defined for n lines, using \parshape in the context
of a 〈number〉 will yield this value of n).

• Tokens defined by \chardef or \mathchardef. After
\chardef\foo=74
the control sequence \foo can be used on its own to mean \char74, but in a
context where a 〈number〉 is wanted it can be used to denote 74:
\count\foo
is equivalent to \count74. This fact is exploited in the allocation routines for
registers (see Chapter 31).
A control sequence thus defined by \chardef is called a 〈chardef token〉; if it is
defined by \mathchardef it is called a 〈mathchardef token〉.

Here is the full list:
〈internal integer〉 −→ 〈integer parameter〉
| 〈special integer〉 | \lastpenalty
| 〈countdef token〉 | \count〈8-bit number〉
| 〈chardef token〉 | 〈mathchardef token〉
| 〈codename〉〈8-bit number〉
| \hyphenchar〈font〉 | \skewchar〈font〉 | \parshape
| \inputlineno | \badness
〈integer parameter〉 −→ | \adjdemerits | \binoppenalty
| \brokenpenalty | \clubpenalty | \day
| \defaulthyphenchar | \defaultskewchar
| \delimiterfactor | \displaywidowpenalty
| \doublehyphendemerits | \endlinechar | \escapechar
| \exhypenpenalty | \fam | \finalhyphendemerits
| \floatingpenalty | \globaldefs | \hangafter

Victor Eijkhout – TEX by Topic 81

Chapter 7. Numbers

| \hbadness | \hyphenpenalty | \interlinepenalty
| \linepenalty | \looseness | \mag
| \maxdeadcycles | \month
| \newlinechar | \outputpenalty | \pausing
| \postdisplaypenalty | \predisplaypenalty
| \pretolerance | \relpenalty | \showboxbreadth
| \showboxdepth | \time | \tolerance
| \tracingcommands | \tracinglostchars | \tracingmacros
| \tracingonline | \tracingoutput | \tracingpages
| \tracingparagraphs | \tracingrestores | \tracingstats
| \uchyph | \vbadness | \widowpenalty | \year

Any internal integer can function as an 〈internal unit〉, which – preceded by 〈optional
spaces〉 – can serve as a 〈unit of measure〉. Examples of this are given in Chapter 8.

7.2.4 Internal integers: other codes of a character

The \catcode command (which was described in Chapter 2) is a 〈codename〉, and like the
other code names it can be used as an integer.

〈codename〉 −→ \catcode | \mathcode | \uccode | \lccode
| \sfcode | \delcode

A 〈codename〉 has to be followed by an 〈8-bit number〉.

Uppercase and lowercase codes were treated in Chapter 3; the \sfcode is treated in Chap-
ter 20; the \mathcode and \delcode are treated in Chapter 21.

7.2.5 〈special integer〉

One of the subclasses of the internal integers is that of the special integers.
〈special integer〉 −→ \spacefactor | \prevgraf
| \deadcycles | \insertpenalties

An assignment to any of these is called an 〈intimate assignment〉, and is automatically
global (see Chapter 10).

7.2.6 Other internal quantities: coersion to integer

TEX provides a conversion between dimensions and integers: if an integer is expected, a
〈dimen〉 or 〈glue〉 used in that context is converted by taking its (natural) size in scaled
points. However, only 〈internal dimen〉s and 〈internal glue〉 can be used this way: no di-
mension or glue denotations can be coerced to integers.

7.2.7 Trailing spaces

The syntax of TEX defines integer denotations (decimal, octal, and hexadecimal) and ‘back-
quoted’ character tokens to be followed by 〈one optional space〉. This means that TEX reads
the token after the number, absorbing it if it was a space token, and backing up if it was
not.

82 Victor Eijkhout – TEX by Topic

7.3. Numbers

Because TEX’s input processor goes into the state ‘skipping spaces’ after it has seen one
space token, this scanning behaviour implies that integer denotations can be followed by
arbitrarily many space characters in the input. Also, a line end is admissible. However, only
one space token is allowed.

7.3 Numbers
TEX can perform an implicit conversion from a string of digits to an integer. Conversion
from a representation in decimal, octal, or hexadecimal notation was treated above. The
conversion the other way, from an 〈internal integer〉 to a printed representation, has to be
performed explicitly. TEX provides two conversion routines, \number and \romannumeral.
The command \number is equivalent to \the when followed by an internal integer. These
commands are performed in the expansion processor of TEX, that is, they are expanded
whenever expansion has not been inhibited.

Both commands yield a string of tokens with category code 12; their argument is a 〈number〉.
Thus \romannumeral51, \romannumeral\year, and \number\linepenalty are valid,
and so is \number13. Applying \number to a denotation has some uses: it removes leading
zeros and superfluous plus and minus signs.

A roman numeral is a string of lowercase ‘roman digits’, which are characters of category
code 12. The sequence

\uppercase\expandafter{\romannumeral ...}

gives uppercase roman numerals. This works because TEX expands tokens in order to find
the opening brace of the argument of \uppercase. If \romannumeral is applied to a
negative number, the result is simply empty.

7.4 Integer registers
Integers can be stored in \count registers:

\count〈8-bit number〉
is an 〈integer variable〉 and an 〈internal integer〉. As an integer variable it can be used in a
〈variable assignment〉:

〈variable assignment〉 −→ 〈integer variable〉〈equals〉〈number〉 | . . .

As an internal integer it can be used as a 〈number〉:

〈number〉 → 〈optional signs〉〈internal integer〉 | . . .

Synonyms for \count registers can be introduced by the \countdef command in a 〈shorthand
definition〉:

\countdef〈control sequence〉〈equals〉〈8-bit number〉

Victor Eijkhout – TEX by Topic 83

Chapter 7. Numbers

A control sequence defined this way is called a 〈countdef token〉, and it serves as an
〈internal integer〉.

The plain TEX macro \newcount (which is declared \outer) uses the \countdef com-
mand to allocate an unused \count register. Counters 0–9 are scratch registers, like all
registers with numbers 0–9. However, counters 0–9 are used for page identification in the
dvi file (see Chapter 33), so they should be used as scratch registers only inside a group.
Counters 10–22 are used for plain TEX’s bookkeeping of allocation of registers. Counter
255 is also scratch.

7.5 Arithmetic
The user can perform some arithmetic in TEX, and TEX also performs arithmetic internally.
User arithmetic is concerned only with integers; the internal arithmetic is mostly on fixed-
point quantities, and only in the case of glue setting on floating-point numbers.

7.5.1 Arithmetic statements

TEX allows the user to perform some arithmetic on integers. The statement
\advance〈integer variable〉〈optional by〉〈number〉

adds the value of the 〈number〉 – which may be negative – to the 〈integer variable〉. Simi-
larly,

\multiply〈integer variable〉〈optional by〉〈number〉
multiplies the value of the 〈integer variable〉, and

\divide〈integer variable〉〈optional by〉〈number〉
divides an 〈integer variable〉.

Multiplication and division are also available for any so-called 〈numeric variable〉: their
most general form is

\multiply〈numeric variable〉〈optional by〉〈number〉
where

〈numeric variable〉 −→ 〈integer variable〉 | 〈dimen variable〉
| 〈glue variable〉 | 〈muglue variable〉

The result of an arithmetic operation should not exceed 230 in absolute value.

Division of integers yields an integer; that is, the remainder is discarded. This raises the
question of how rounding is performed when either operand is negative. In such cases TEX
performs the division with the absolute values of the operands, and takes the negative of
the result if exactly one operand was negative.

7.5.2 Floating-point arithmetic

Internally some arithmetic on floating-point quantities is performed, namely in the calcula-
tion of glue set ratios. However, machine-dependent aspects of rounding cannot influence
the decision process of TEX, so machine independence of TEX is guaranteed in this respect
(sufficient accuracy of rounding is enforced by the Trip test of [21]).

84 Victor Eijkhout – TEX by Topic

7.6. Number testing

7.5.3 Fixed-point arithmetic

All fractional arithmetic in TEX is performed in fixed-point arithmetic of ‘scaled integers’:
multiples of 2−16. This ensures the machine independence of TEX. Printed representations
of scaled integers are rounded to 5 decimal digits.

In ordinary 32-bit implementations of TEX the largest integers are 231 − 1 in absolute size.
The user is not allowed to specify dimensions larger in absolute size than 230−1: two such
dimensions can be added or subtracted without overflow on a 32-bit system.

7.6 Number testing
The most general test for integers in TEX is

\ifnum〈number1〉〈relation〉〈number2〉
where 〈relation〉 is a <, >, or = character, all of category 12.

Distinguishing between odd and even numbers is done by
\ifodd〈number〉

A numeric case statement is provided by
\ifcase〈number〉〈case0〉\or...\or〈casen〉\else〈other cases〉\fi

where the \else-part is optional. The tokens for 〈casei〉 are processed if the number turns
out to be i; other cases are skipped, similarly to what ordinarily happens in conditionals
(see Chapter 13).

7.7 Remarks
7.7.1 Character constants

In formats and macro collections numeric constants are often needed. There are several
ways to implement these in TEX.

Firstly,
\newcount\SomeConstant \SomeConstant=42

This is wasteful, as it uses up a \count register.

Secondly,
\def\SomeConstant{42}

Better but accident prone: TEX has to expand to find the number – which in itself is a slight
overhead – and may inadvertently expand some tokens that should have been left alone.

Thirdly,
\chardef\SomeConstant=42

This one is fine. A 〈chardef token〉 has the same status as a \count register: both are
〈internal integer〉s. Therefore a number defined this way can be used everywhere that a
\count register is feasible. For large numbers the \chardef can be replaced by \mathchardef,
which runs to "7FFF = 32 767. Note that a 〈mathchardef token〉 can usually only appear
in math mode, but in the context of a number it can appear anywhere.

Victor Eijkhout – TEX by Topic 85

Chapter 7. Numbers

7.7.2 Expanding too far / how far

It is a common mistake to write pieces of TEX code where TEX will inadvertently expand
something because it is trying to compose a number. For example:
\def\par{\endgraf\penalty200}
...\par \number\pageno

Here the page number will be absorbed into the value of the penalty.

Now consider
\newcount\midpenalty \midpenalty=200
\def\par{\endgraf\penalty\midpenalty}
...\par \number\pageno

Here the page number is not scooped up by mistake: TEX is trying to locate a 〈number〉 after
the \penalty, and it finds a 〈countdef token〉. This is not converted to a representation in
digits, so there is never any danger of the page number being touched.

It is possible to convert a 〈countdef token〉 first to a representation in digits before assigning
it:
\penalty\number\midpenalty

and this brings back again all previous problems of expansion.

86 Victor Eijkhout – TEX by Topic

Chapter 8

Dimensions and Glue

In TEX vertical and horizontal white space can have a possibility to adjust itself through
‘stretching’ or ‘shrinking’. An adjustable white space is called ‘glue’. This chapter treats
all technical concepts related to dimensions and glue, and it explains how the badness of
stretching or shrinking a certain amount is calculated.

\dimen Dimension register prefix.
\dimendef Define a control sequence to be a synonym for a \dimen register.
\newdimen Allocate an unused dimen register.
\skip Skip register prefix.
\skipdef Define a control sequence to be a synonym for a \skip register.
\newskip Allocate an unused skip register.
\ifdim Compare two dimensions.
\hskip Insert in horizontal mode a glue item.
\hfil Equivalent to \hskip 0cm plus 1fil.
\hfilneg Equivalent to \hskip 0cm minus 1fil.
\hfill Equivalent to \hskip 0cm plus 1fill.
\hss Equivalent to \hskip 0cm plus 1fil minus 1fil.
\vskip Insert in vertical mode a glue item.
\vfil Equivalent to \vskip 0cm plus 1fil.
\vfill Equivalent to \vskip 0cm plus 1fill.
\vfilneg Equivalent to \vskip 0cm minus 1fil.
\vss Equivalent to \vskip 0cm plus 1fil minus 1fil.
\kern Add a kern item to the current horizontal or vertical list.
\lastkern If the last item on the current list was a kern, the size of it.
\lastskip If the last item on the current list was a glue, the size of it.
\unkern If the last item of the current list was a kern, remove it.
\unskip If the last item of the current list was a glue, remove it.
\removelastskip Macro to append the negative of the \lastskip.
\advance Arithmetic command to add to or subtract from a 〈numeric variable〉.
\multiply Arithmetic command to multiply a 〈numeric variable〉.
\divide Arithmetic command to divide a 〈numeric variable〉.

87

Chapter 8. Dimensions and Glue

8.1 Definition of 〈glue〉 and 〈dimen〉
This section gives the syntax of the quantities 〈dimen〉 and 〈glue〉. In the next section the
practical aspects of glue are treated.

Unfortunately the terminology for glue is slightly confusing. The syntactical quantity 〈glue〉
is a dimension (a distance) with possibly a stretch and/or shrink component. In order to add
a glob of ‘glue’ (a white space) to a list one has to let a 〈glue〉 be preceded by commands
such as \vskip.

8.1.1 Definition of dimensions

A 〈dimen〉 is what TEX expects to see when it needs to indicate a dimension; it can be
positive or negative.

〈dimen〉 −→ 〈optional signs〉〈unsigned dimen〉
The unsigned part of a 〈dimen〉 can be

〈unsigned dimen〉 −→ 〈normal dimen〉 | 〈coerced dimen〉
〈normal dimen〉 −→ 〈internal dimen〉 | 〈factor〉〈unit of measure〉
〈coerced dimen〉 −→ 〈internal glue〉

That is, we have the following three cases:

• an 〈internal dimen〉; this is any register or parameter of TEX that has a 〈dimen〉
value:

〈internal dimen〉 −→ 〈dimen parameter〉
| 〈special dimen〉 | \lastkern
| 〈dimendef token〉 | \dimen〈8-bit number〉
| \fontdimen〈number〉〈font〉
| 〈box dimension〉〈8-bit number〉
〈dimen parameter〉 −→ \boxmaxdepth
| \delimitershortfall | \displayindent
| \displaywidth | \hangindent
| \hfuzz | \hoffset | \hsize
| \lineskiplimit | \mathsurround
| \maxdepth | \nulldelimiterspace
| \overfullrule | \parindent
| \predisplaysize | \scriptspace
| \splitmaxdepth | \vfuzz
| \voffset | \vsize

• a dimension denotation, consisting of 〈factor〉〈unit of measure〉, for example 0.7\vsize;
or

• an 〈internal glue〉 (see below) coerced to a dimension by omitting the stretch and
shrink components, for example \parfillskip.

A dimension denotation is a somewhat complicated entity:

• a 〈factor〉 is an integer denotation, a decimal constant denotation (a number with
an integral and a fractional part), or an 〈internal integer〉

88 Victor Eijkhout – TEX by Topic

8.1. Definition of 〈glue〉 and 〈dimen〉

〈factor〉 −→ 〈normal integer〉 | 〈decimal constant〉
〈normal integer〉 −→ 〈integer denotation〉
| 〈internal integer〉
〈decimal constant〉 −→ .12 | ,12

| 〈digit〉〈decimal constant〉
| 〈decimal constant〉〈digit〉

An internal integer is a parameter that is ‘really’ an integer (for instance, \count0),
and not coerced from a dimension or glue. See Chapter 7 for the definition of va-
rious kinds of integers.

• a 〈unit of measure〉 can be a 〈physical unit〉, that is, an ordinary unit such as cm
(possibly preceded by true), an internal unit such as em, but also an 〈internal
integer〉 (by conversion to scaled points), an 〈internal dimen〉, or an 〈internal glue〉.

〈unit of measure〉 −→ 〈optional spaces〉〈internal unit〉
| 〈optional true〉〈physical unit〉〈one optional space〉
〈internal unit〉 −→ em〈one optional space〉
| ex〈one optional space〉 | 〈internal integer〉
| 〈internal dimen〉 | 〈internal glue〉

Some 〈dimen〉s are called 〈special dimen〉s:
〈special dimen〉 −→ \prevdepth
| \pagegoal | \pagetotal | \pagestretch
| \pagefilstretch | \pagefillstretch
| \pagefilllstretch | \pageshrink | \pagedepth

An assignment to any of these is called an 〈intimate assignment〉, and it is automatically
global (see Chapter 10). The meaning of these dimensions is explained in Chapter 27, with
the exception of \prevdepth which is treated in Chapter 15.

8.1.2 Definition of glue

A 〈glue〉 is either some form of glue variable, or a glue denotation with explicitly indicated
stretch and shrink. Specifically,

〈glue〉 −→ 〈optional signs〉〈internal glue〉 | 〈dimen〉〈stretch〉〈shrink〉
〈internal glue〉 −→ 〈glue parameter〉 | \lastskip
| 〈skipdef token〉 | \skip〈8-bit number〉
〈glue parameter〉 −→ \abovedisplayshortskip
| \abovedisplayskip | \baselineskip
| \belowdisplayshortskip | \belowdisplayskip
| \leftskip | \lineskip | \parfillskip | \parskip
| \rightskip | \spaceskip | \splittopskip | \tabskip
| \topskip | \xspaceskip

The stretch and shrink components in a glue denotation are optional, but when both are
specified they have to be given in sequence; they are defined as

〈stretch〉 −→ plus 〈dimen〉 | plus〈fil dimen〉 | 〈optional spaces〉
〈shrink〉 −→ minus 〈dimen〉 | minus〈fil dimen〉 | 〈optional spaces〉
〈fil dimen〉 −→ 〈optional signs〉〈factor〉〈fil unit〉〈optional spaces〉
〈fil unit〉 −→ | fil | fill | filll

Victor Eijkhout – TEX by Topic 89

Chapter 8. Dimensions and Glue

The actual definition of 〈fil unit〉 is recursive (see Chapter 36), but these are the only valid
possibilities.

8.1.3 Conversion of 〈glue〉 to 〈dimen〉

The grammar rule
〈dimen〉 −→ 〈factor〉〈unit of measure〉

has some noteworthy consequences, caused by the fact that a 〈unit of measure〉 need not
look like a ‘unit of measure’ at all (see the list above).

For instance, from this definition we conclude that the statement
\dimen0=\lastpenalty\lastpenalty

is syntactically correct because \lastpenalty can function both as an integer and as 〈unit
of measure〉 by taking its value in scaled points. After \penalty8 the \dimen0 thus defi-
ned will have a size of 64sp.

More importantly, consider the case where the 〈unit of measure〉 is an 〈internal glue〉, that
is, any sort of glue parameter. Prefixing such a glue with a number (the 〈factor〉) makes it a
valid 〈dimen〉 specification. Thus
\skip0=\skip1

is very different from
\skip0=1\skip1

The first statement makes \skip0 equal to \skip1, the second converts the \skip1 to a
〈dimen〉 before assigning it. In other words, the \skip0 defined by the second statement
has no stretch or shrink.

8.1.4 Registers for \dimen and \skip

TEX has registers for storing 〈dimen〉 and 〈glue〉 values: the \dimen and \skip registers
respectively. These are accessible by the expressions

\dimen〈number〉
and

\skip〈number〉
As with all registers of TEX, these registers are numbered 0–255.

Synonyms for registers can be made with the \dimendef and \skipdef commands. Their
syntax is

\dimendef〈control sequence〉〈equals〉〈8-bit number〉
and

\skipdef〈control sequence〉〈equals〉〈8-bit number〉
For example, after \skipdef\foo=13 using \foo is equivalent to using \skip13.

Macros \newdimen and \newskip exist in plain TEXfor allocating an unused dimen or
skip register. These macros are defined to be \outer in the plain format.

90 Victor Eijkhout – TEX by Topic

8.1. Definition of 〈glue〉 and 〈dimen〉

8.1.5 Arithmetic: addition

As for integer variables, arithmetic operations exist for dimen, glue, and muglue (mathe-
matical glue; see page 205) variables.

The expressions

\advance〈dimen variable〉〈optional by〉〈dimen〉
\advance〈glue variable〉〈optional by〉〈glue〉
\advance〈muglue variable〉〈optional by〉〈muglue〉

add to the size of a dimen, glue, or muglue.

Advancing a 〈glue variable〉 by 〈glue〉 is done by adding the natural sizes, and the stretch
and shrink components. Because TEX converts between 〈glue〉 and 〈dimen〉, it is possible
to write for instance

\advance\skip1 by \dimen1

or

\advance\dimen1 by \skip1

In the first case \dimen1 is coerced to 〈glue〉 without stretch or shrink; in the second case
the \skip1 is coerced to a 〈dimen〉 by taking its natural size.

8.1.6 Arithmetic: multiplication and division

Multiplication and division operations exist for glue and dimensions. One may for instance
write

\multiply\skip1 by 2

which multiplies the natural size, and the stretch and shrink components of \skip1 by 2.

The second operand of a \multiply or \divide operation can only be a 〈number〉, that
is, an integer. Introducing the notion of 〈numeric variable〉:

〈numeric variable〉 −→ 〈integer variable〉 | 〈dimen variable〉
| 〈glue variable〉 | 〈muglue variable〉

these operations take the form

\multiply〈numeric variable〉〈optional by〉〈number〉

and

\divide〈numeric variable〉〈optional by〉〈number〉

Glue and dimen can be multiplied by non-integer quantities:

\skip1=2.5\skip2
\dimen1=.78\dimen2

However, in the first line the \skip2 is first coerced to a 〈dimen〉 value by omitting its
stretch and shrink.

Victor Eijkhout – TEX by Topic 91

Chapter 8. Dimensions and Glue

8.2 More about dimensions
8.2.1 Units of measurement

In TEX dimensions can be indicated in

centimetre denoted cm or
millimetre denoted mm; these are SI units (Système International d’Unités, the internatio-

nal system of standard units of measurements).
inch in; more common in the Anglo-American world. One inch is 2.54 centimetres.
pica denoted pc; one pica is 12 points.
point denoted pt; the common system for Anglo-American printers. One inch is 72.27

points.
didot point denoted dd; the common system for continental European printers. Further-

more, 1157 didot points are 1238 points.
cicero denoted cc; one cicero is 12 didot points.
big point denoted bp; one inch is 72 big points.
scaled point denoted sp; this is the smallest unit in TEX, and all measurements are integral

multiples of one scaled point. There are 65 536 scaled points in a point.

Decimal fractions can be written using both the Anglo-American system with the decimal
point (for example, 1in=72.27pt) and the continental European system with a decimal
comma; 1in=72,27pt.

Internally TEX works with multiples of a smallest dimension: the scaled point. Dimensions
larger (in absolute value) than 230−1sp, which is about 5.75 metres or 18.9 feet, are illegal.

Both the pica system and the didot system are of French origin: in 1737 the type founder
Pierre Simon Fournier introduced typographical points based on the French foot. Although
at first he introduced a system based on lines and points, he later took the point as unit:
there are 72 points in an inch, which is one-twelfth of a foot. About 1770 another foun-
der, François Ambroise Didot, introduced points based on the more common, and slightly
longer, ‘pied du roi’.

8.2.2 Dimension testing

Dimensions and natural sizes of glue can be compared with the \ifdim test. This takes the
form

\ifdim〈dimen1〉〈relation〉〈dimen2〉
where the relation can be an >, <, or = token, all of category 12.

8.2.3 Defined dimensions

\z@ 0pt
\maxdimen 16383.99999pt; the largest legal dimension.

These 〈dimen〉s are predefined in the plain format; for instance

\newdimen\z@ \z@=0pt

92 Victor Eijkhout – TEX by Topic

8.3. More about glue

Using such abbreviations for commonly used dimensions has at least two advantages. First
of all it saves main memory if such a dimension occurs in a macro: a control sequence is
one token, whereas a string such as 0pt takes three. Secondly, it saves time in processing,
as TEX does not need to perform conversions to arrive at the correct type of object.

Control sequences such as \z@ are only available to a user who changes the category code
of the ‘at’ sign. Ordinarily, these control sequences appear only in the macros defined in
packages such as the plain format.

8.3 More about glue
Glue items can be added to a vertical list with one of the commands \vskip〈glue〉, \vfil,
\vfill, \vss or \vfilneg; glue items can be added to a horizontal list with one of the
commands \hskip〈glue〉, \hfil, \hfill, \hss or \hfilneg. We will now treat the pro-
perties of glue.

8.3.1 Stretch and shrink

In the syntax given above, 〈glue〉 was defined as having
• a ‘natural size’, which is a 〈dimen〉, and optionally
• a ‘stretch’ and ‘shrink’ component built out of a 〈fil dimen〉.
Each list that TEX builds has amounts of stretch and shrink (possibly zero), which are the
sum of the stretch and shrink components of individual pieces of glue in the list. Stretch
and shrink are used if the context in which the list appears requires it to assume a size that
is different from its natural size.

There is an important difference in behaviour between stretch and shrink components when
they are finite – that is, when the 〈fildimen〉 is not fil(l(l)). A finite amount of shrink is
indeed the maximum shrink that TEX will take: the amount of glue specified as
5pt minus 3pt

can shrink to 2pt, but not further. In contrast to this, a finite amount of stretch can be
stretched arbitrarily far. Such arbitrary stretching has a large ‘badness’, however. Badness
calculation is treated below.

The sequence with natural size 20pt
\hskip 10pt plus 2pt \hskip 10pt plus 3pt
has 5pt of stretch, but it has no shrink. In
\hskip 10pt minus 2pt \hskip 10pt plus 3pt
there is 3pt of stretch, and 2pt of shrink, so its minimal size is 18pt.
Positive shrink is not the same as negative stretch:
\hskip 10pt plus -2pt \hskip 10pt plus 3pt
looks a lot like the previous example, but it cannot be shrunk as there are
no minus〈dimen〉 specifications. It does have 1pt of stretch, however.
This is another example of negative amounts of shrink and stretch. It is
not possible to stretch glue (in the informal sense) by shrinking it (in the
technical sense):

Victor Eijkhout – TEX by Topic 93

Chapter 8. Dimensions and Glue

\hbox to 5cm{a\hskip 0cm minus -1fil}
is an underfull box, because TEX looks for a plus 〈dimen〉 specification
when it needs to stretch the contents.
Finally,
\hskip 10pt plus -3pt \hskip 10pt plus 3pt
can neither stretch nor shrink. The fact that there is only stretch available
means that the sequence cannot shrink. However, the stretch components
cancel out: the total stretch is zero. Another way of looking at this is to
consider that for each point that the second glue item would stretch, the
first one would ‘stretch back’ one point.

Any amount of infinite stretch or shrink overpowers all finite stretch or shrink available:

\hbox to 5cm{\hskip 0cm plus 16384pt
text\hskip 0cm plus 0.0001fil}

has the text at the extreme left of the box. There are three orders of ‘infinity’, each one
infinitely stronger than the previous one:

\hbox to 5cm{\hskip 0cm plus 16384fil
text\hskip 0cm plus 0.0001fill}

and

\hbox to 5cm{\hskip 0cm plus 16384fill
text\hskip 0cm plus 0.0001filll}

both have the text at the left end of the box.

8.3.2 Glue setting

In the process of ‘glue setting’, the desired width (or height) of a box is compared with the
natural dimension of its contents, which is the sum of all natural dimensions of boxes and
globs of glue. If the two differ, any available stretchability or shrinkability is used to bridge
the gap. To attain the desired dimension of the box only the glue of the highest available
order is set: each piece of glue of that order is stretched or shrunk by the same ratio.

For example, in

\hbox to 6pt{\hskip 0pt plus 3pt \hskip 0pt plus 9pt}

the natural size of the box is 0pt, and the total stretch is 12pt. In order to obtain a box
of 6pt each glue item is set with a stretch ratio of 1/2. Thus the result is equivalent to

\hbox {\hskip 1.5pt \hskip 4.5pt}

Only the highest order of stretch or shrink is used: in

\hbox to 6pt{\hskip 0pt plus 1fil \hskip 0pt plus 9pt}

the second glue will assume its natural size of 0pt, and only the first glue will be stretched.

TEX will never exceed the maximum value of a finite amount of shrink. A box that cannot
be shrunk enough is called ‘overfull’. Finite stretchability can be exceeded to provide an
escape in difficult situations; however, TEX is likely to give an Underfull \hbox message
about this (see page 65). For an example of infinite shrink see page 65.

94 Victor Eijkhout – TEX by Topic

8.3. More about glue

8.3.3 Badness

When stretching or shrinking a list TEX calculates badness based on the ratio between actual
stretch and the amount of stretch present in the line. See Chapter 19 for the application of
badness to the paragraph algorithm.

The formula for badness of a list that is stretched (shrunk) is

b = min

(
10 000, 100×

(
actual amount stretched (shrunk)

possible amount of stretch (shrink)

)3
)

In reality TEX uses a slightly different formula that is easier to calculate, but behaves the
same. Since glue setting is one of the main activities of TEX, this must be performed as
efficiently as possible.

This formula lets the badness be a reasonably small number if the glue set ratio (the fraction
in the above expression) is reasonably small, but will let it grow rapidly once the ratio is
more than 1. Badness is infinite if the glue would have to shrink more than the allotted
amount; stretching glue beyond its maximum is possible, so this provides an escape for
very difficult lines of text or pages.

In TEX3, the \badness parameter records the badness of the most recently formed box.

8.3.4 Glue and breaking

TEX can break lines and pages in several kinds of places. One of these places is before a
glue item. The glue is then discarded. For line breaks this is treated in Chapter 19, for page
breaks see Chapter 27.

There are two macros in plain TEX, \hglue and \vglue, that give non-disappearing glue
in horizontal and vertical mode respectively. For the horizontal case this is accomplished
by placing:
\vrule width 0pt \nobreak \hskip ...

Because TEX breaks at the front end of glue, this glue will always stay attached to the
rule, and will therefore never disappear. The actual macro definitions are somewhat more
complicated, because they take care to preserve the \spacefactor and the \prevdepth.

8.3.5 \kern

The \kern command specifies a kern item in whatever mode TEX is currently in. A kern
item is much like a glue item without stretch or shrink. It differs from glue in that it is in
general not a legal breakpoint. Thus in
.. text .. \hbox{a}\kern0pt\hbox{b}

TEX will not break lines in between the boxes; in
.. text .. \hbox{a}\hskip0pt\hbox{b}

a line can be broken in between the boxes.

However, if a kern is followed by glue, TEX can break at the kern (provided that it is not
in math mode). In horizontal mode both the kern and the glue then disappear in the break.

Victor Eijkhout – TEX by Topic 95

Chapter 8. Dimensions and Glue

In vertical mode they are discarded when they are moved to the (empty) current page after
the material before the break has been disposed of by the output routine (see Chapter 27).

8.3.6 Glue and modes

All horizontal skip commands are 〈horizontal command〉s and all vertical skip commands
are 〈vertical commands〉s. This means that, for instance, an \hskip command makes TEX
start a paragraph if it is given in vertical mode. The \kern command can be given in both
modes.

8.3.7 The last glue item in a list: backspacing

The last glue item in a list can be measured, and it can be removed in all modes but external
vertical mode. The internal variables \lastskip and \lastkern can be used to measure
the last glob of glue in all modes; if the last glue was not a skip or kern respectively they
give 0pt. In math mode the \lastskip functions as 〈internal muglue〉, but in general it
classifies as 〈internal glue〉. The \lastskip and \lastkern are also 0pt if that was the
size of the last glue or kern item on the list.

The operations \unskip and \unkern remove the last item of a list, if this is a glue or kern
respectively. They have no effect in external vertical mode; in that case the best substitute
is \vskip-\lastskip and \kern-\lastkern.

In the process of paragraph building TEX itself performs an important \unskip: a para-
graph ending with a white line will have a space token inserted by TEX’s input processor.
This is removed by an \unskip before the \parfillskip glue (see Chapter 17) is inser-
ted.

Glue is treated by TEX as a special case of leaders, which becomes apparent when \unskip
is applied to leaders: they are removed.

8.3.8 Examples of backspacing

The plain TEX macro \removelastskip is defined as

\ifdim\lastskip=0pt \else \vskip-\lastskip \fi

If the last item on the list was a glue, this macro will backspace by its value, provided its
natural size was not zero. In all other cases, nothing is added to the list.

Sometimes an intelligent version of commands such as \vskip is necessary, in the sense
that two subsequent skip commands should result only in the larger of the two glue amounts.
On page 164 such a macro is used:

\newskip\tempskipa
\def\vspace#1{\tempskipa=#1\relax

\ifvmode \ifdim\tempskipa<\lastskip
\else \vskip-\lastskip \vskip\tempskipa
\fi

\else \vskip\tempskipa \fi}

96 Victor Eijkhout – TEX by Topic

8.3. More about glue

First of all, this tests whether the mode is vertical; if not, the argument can safely be placed.
Copying the argument into a skip register is necessary because \vspace{2pt plus 3pt}
would lead to problems in an \ifdim#1<\lastskip test.

If the surrounding mode was vertical, the argument should only be placed if it is not less
than what is already there. The macro would be incorrect if the test read

\ifdim\tempskipa>\lastskip
\vskip-\lastskip \vskip\tempskipa

\fi

In this case the sequence
... last word.\par \vspace{0pt plus 1fil}

would not place any glue, because after the \par we are in vertical mode and \lastskip
has a value of 0pt.

8.3.9 Glue in trace output

If the workings of TEX are traced by setting \tracingoutput positive, or if TEX writes a
box to the log file (because of a \showbox command, or because it is overfull or underfull),
glue is denoted by the control sequence \glue. This is not a TEX command; it merely
indicates the presence of glue in the current list.

The box representation that TEX generated from, for instance, \showbox inserts a space
after every explicit \kern, but no space is inserted after an implicit kern that was inserted
by the kerning information in the font tfm file. Thus \kern 2.0pt denotes a kern that was
inserted by the user or by a macro, and \kern2.0pt denotes an implicit kern.

Glue that is inserted automatically (\topskip, \baselineskip, et cetera) is denoted by
name in TEX’s trace output. For example, the box
\vbox{\hbox{Vo}\hbox{b}}

looks like
\vbox(18.83331+0.0)x11.66669
.\hbox(6.83331+0.0)x11.66669
..\tenrm V
..\kern-0.83334
..\tenrm o
.\glue(\baselineskip) 5.05556
.\hbox(6.94444+0.0)x5.55557
..\tenrm b

Note the implicit kern inserted between ‘V’ and ‘o’.

Victor Eijkhout – TEX by Topic 97

Chapter 9

Rules and Leaders

Rules and leaders are two ways of getting TEX to draw a line. Leaders are more general than
rules: they can also fill available space with copies of a certain box. This chapter explain
how rules and leaders work, and how they interact with modes.

\hrule Rule that spreads in horizontal direction.
\vrule Rule that spreads in vertical direction.
\leaders Fill a specified amount of space with a rule or copies of box.
\cleaders Like \leaders, but with box leaders any excess space is split equally before

and after the leaders.
\xleaders Like \leaders, but with box leaders any excess space is spread equally be-

fore, after, and between the boxes.

9.1 Rules
TEX’s rule commands give rectangular black patches with horizontal and vertical sides.
Most of the times, a rule command will give output that looks like a rule, but can also be
produced by a rule.

TEX has both horizontal and vertical rules, but the names do not necessarily imply anything
about the shape. They do, however, imply something about modes: an \hrule command
can only be used in vertical mode, and a \vrule only in horizontal mode. In fact, an
\hrule is a 〈vertical command〉, and a \vrule is a 〈horizontal command〉, so TEX may
change modes when encountering these commands.

Why then is a \vrule called a vertical rule? The reason is that a \vrule can expand
arbitrarily far in the vertical direction: if its height and depth are not specified explicitly it
will take as much room as its surroundings allow.

\hbox{\vrule\ text \vrule}
looks like

text
and
\hbox{\vrule\ A gogo! \vrule}

98

9.2. Leaders

looks like
A gogo!

For the \hrule command a similar statement is true: a horizontal rule can spread to assume
the width of its surroundings. Thus

\vbox{\hbox{One line of text}\hrule}

looks like

One line of text

9.1.1 Rule dimensions

Horizontal and vertical rules have a default thickness:

\hrule is the same as \hrule height.4pt depth0pt

and

\vrule is the same as \vrule width.4pt

and if the remaining dimension remains unspecified, the rule extends in that direction to fill
the enclosing box.

Here is the formal specification of how to indicate rule sizes:

〈vertical rule〉 −→ \vrule〈rule specification〉
〈horizontal rule〉 −→ \hrule〈rule specification〉
〈rule specification〉 −→ 〈optional spaces〉
| 〈rule dimensions〉〈rule specification〉
〈rule dimension〉 −→ width〈dimen〉 | height〈dimen〉 | depth〈dimen〉

If a rule dimension is specified twice, the second instance takes precedence over the first.
This makes it possible to override the default dimensions. For instance, after

\let\xhrule\hrule \def\hrule{\xhrule height .8pt}

the macro \hrule gives a horizontal rule of double the original height, and it is still possi-
ble with

\hrule height 2pt

to specify other heights.

It is possible to specify all three dimensions; then

\vrule height1ex depth0pt width1ex

and

\hrule height1ex depth0pt width1ex

look the same. Still, each of them can be used only in the appropriate mode.

9.2 Leaders
Rules are intimately connected to modes, which makes it easy to obtain some effects. For
instance, a typical application of a vertical rule looks like

Victor Eijkhout – TEX by Topic 99

Chapter 9. Rules and Leaders

\hbox{\vrule width1pt\ Important text! \vrule width 1pt}

which gives

Important text!

However, one might want to have a horizontal rule in horizontal mode for effects such as
←− 5cm −→
from here to there

An \hrule can not be used in horizontal mode, and a vertical rule will not spread automa-
tically.

However, there is a way to use an \hrule command in horizontal mode and a \vrule in
vertical mode, and that is with ‘leaders’, so called because they lead your eye across the
page. A leader command tells TEX to fill a specified space, in whatever mode it is in, with
as many copies of some box or rule specification as are needed. For instance, the above
example was given as

\hbox to 5cm{from here\leaders\hrule\hfil to there}

that is, with an \hrule that was allowed to stretch along an \hfil. Note that the leader
was given a horizontal skip, corresponding to the horizontal mode in which it appeared.

A general leader command looks like

〈leaders〉〈box or rule〉〈vertical/horizontal/mathematical skip〉
where 〈leaders〉 is \leaders, \cleaders, or \xleaders, a 〈box or rule〉 is a 〈box〉,
\vrule, or \hrule, and the lists of horizontal and vertical skips appear in Chapter 6;
a mathematical skip is either a horizontal skip or an \mskip (see page 205). Leaders can
thus be used in all three modes. Of course, the appropriate kind of skip must be specified.

A horizontal (vertical) box containing leaders has at least the height and depth (width) of
the 〈box or rule〉 used in the leaders, even if, as can happen in the case of box leaders, no
actual leaders are placed.

9.2.1 Rule leaders

Rule leaders fill the specified amount of space with a rule extending in the direction of the
skip specified. The other dimensions of the resulting rule leader are determined by the sort
of rule that is used: either dimensions can be specified explicitly, or the default values can
be used.

For instance,
\hbox{g\leaders\hrule\hskip20pt f}

gives

g f

because a horizontal rule has a default height of .4pt. On the other hand,
\hbox{g\leaders\vrule\hskip20pt f}

gives

g f

100 Victor Eijkhout – TEX by Topic

9.2. Leaders

because the height and depth of a vertical rule by default fill the surrounding box.

Spurious rule dimensions are ignored: in horizontal mode
\leaders\hrule width 10pt \hskip 20pt

is equivalent to
\leaders\hrule \hskip 20pt

If the width or height-plus-depth of either the skip or the box is negative, TEX uses ordinary
glue instead of leaders.

9.2.2 Box leaders

Box leaders fill the available spaces with copies of a given box, instead of with a rule.

For all of the following examples, assume that a box register has been allocated:
\newbox\centerdot \setbox\centerdot=\hbox{\hskip.7em.\hskip.7em}

Now the output of
\hbox to 8cm {here\leaders\copy\centerdot\hfil there}

is
here there

That is, copies of the box register fill up the available space.

Dot leaders, as in the above example, are often used for tables of contents. In such appli-
cations it is desirable that dots on subsequent lines are vertically aligned. The \leaders
command does this automatically:
\hbox to 8cm {here\leaders\copy\centerdot\hfil there}
\hbox to 8cm {over here\leaders\copy\centerdot\hfil over there}

gives
here there
over here over there

The mechanism behind this is the following: TEX acts as if an infinite row of boxes starts
(invisibly) at the left edge of the surrounding box, and the row of copies actually placed is
merely the part of this row that is not obscured by the other contents of the box.

Stated differently, box leaders are a window on an infinite row of boxes, and the row starts
at the left edge of the surrounding box. Consider the following example:
\hbox to 8cm {\leaders\copy\centerdot\hfil}
\hbox to 8cm {word\leaders\copy\centerdot\hfil}

which gives
.

word
The row of leaders boxes becomes visible as soon as it does not coincide with other mate-
rial.

The above discussion only talked about leaders in horizontal mode. Leaders can equally
well be placed in vertical mode; for box leaders the ‘infinite row’ then starts at the top of
the surrounding box.

Victor Eijkhout – TEX by Topic 101

Chapter 9. Rules and Leaders

9.2.3 Evenly spaced leaders

Aligning subsequent box leaders in the way described above means that the white space
before and after the leaders will in general be different. If vertical alignment is not an issue
it may be aesthetically more pleasing to have the leaders evenly spaced. The \cleaders
command is like \leaders, except that it splits excess space before and after the leaders
into two equal parts, centring the row of boxes in the available space.

\hbox to 7.8cm {here\cleaders\copy\centerdot\hfil there}
\hbox to 7.8cm {here is\cleaders\copy\centerdot\hfil there}
gives

here there
here is there

The ‘expanding leaders’ \xleaders spread excess space evenly between
the boxes, with equal globs of glue before, after, and in between leader
boxes.

\hbox to 7.8cm{here\hskip.7em
\xleaders\copy\centerdot\hfil \hskip.7em there}

gives
here there

Note that the glue in the leader box is balanced here with explicit glue
before and after the leaders; leaving out these glue items, as in
\hbox to 7.8cm {here\xleaders\copy\centerdot\hfil there}
gives

here there
which is clearly not what was intended.

9.3 Assorted remarks
9.3.1 Rules and modes

Above it was explained how rules can only occur in the appropriate modes. Rules also in-
fluence mode-specific quantities: no baselineskip is added before rules in vertical mode. In
order to prevent glue after rules, TEX sets \prevdepth to -1000pt (see Chapter 15). Simi-
larly the \spacefactor is set to 1000 after a \vrule in horizontal mode (see Chapter 19).

9.3.2 Ending a paragraph with leaders

An attempt to simulate an \hrule at the end of a paragraph by

\nobreak\leaders\hrule\hfill\par

does not work. The reason for this is that TEX performs an \unskip at the end of a para-
graph, which removes the leaders. Normally this \unskip removes any space token inser-
ted by the input processor after the last line. Remedy: stick an \hbox{} at the end of the
leaders.

102 Victor Eijkhout – TEX by Topic

9.3. Assorted remarks

9.3.3 Leaders and box registers

In the above examples the leader box was inserted with \copy. The output of
\hbox to 8cm {here\leaders\box\centerdot\hfil there}
\hbox to 8cm {over here\leaders\box\centerdot\hfil

over there}

is
here there
over here over there

The box register is emptied after the first leader command, but more than one copy is placed
in that first command.

9.3.4 Output in leader boxes

Any \write, \openout, or \closeout operation appearing in leader boxes is ignored.
Otherwise such an operation would be executed once for every copy of the box that would
be shipped out.

9.3.5 Box leaders in trace output

The dumped box representation obtained from, for instance, \tracingoutput does not
write out box leaders in full: only the total size and one copy of the box used are dumped.
In particular, the surrounding white space before and after the leaders is not indicated.

9.3.6 Leaders and shifted margins

If margins have been shifted, leaders may look different depending on how the shift has
been realized. For an illustration of how \hangindent and \leftskip influence the look
of leaders, consider the following examples, where
\setbox0=\hbox{K o }

The horizontal boxes above the leaders serve to indicate the starting point of the row of
leaders.

First
\hbox{\leaders\copy0\hskip5cm}
\noindent\advance\leftskip 1em

\leaders\copy0\hskip5cm\hbox{}\par

gives
K o K o K o K o K o K o K o K o

K o K o K o K o K o K o K o
Then
\hbox{\kern1em\hbox{\leaders\copy0\hskip5cm}}
\hangindent=1em \hangafter=-1 \noindent

\leaders\copy0\hskip5cm\hbox{}\par

gives (note the shift with respect to the previous example)

Victor Eijkhout – TEX by Topic 103

Chapter 9. Rules and Leaders

K o K o K o K o K o K o K o K o
K o K o K o K o K o K o K o K o

In the first paragraph the \leftskip glue only obscures the first leader box; in the second
paragraph the hanging indentation actually shifts the orientation point for the row of lea-
ders. Hanging indentation is performed in TEX by a \moveright of the boxes containing
the lines of the paragraph.

104 Victor Eijkhout – TEX by Topic

Chapter 10

Grouping

TEX has a grouping mechanism that is able to confine most changes to a particular locality.
This chapter explains what sort of actions can be local, and how groups are formed.

\bgroup Implicit beginning of group character.
\egroup Implicit end of group character.
\begingroup Open a group that must be closed with \endgroup.
\endgroup Close a group that was opened with \begingroup.
\aftergroup Save the next token for insertion after the current group ends.
\global Make assignments, macro definitions, and arithmetic global.
\globaldefs Parameter for overriding \global prefixes. IniTEX default: 0.

10.1 The grouping mechanism
A group is a sequence of tokens starting with a ‘beginning of group’ token, and ending with
an ‘end of group’ token, and in which all such tokens are properly balanced.

The grouping mechanism of TEX is not the same as the block structure of ordinary pro-
gramming languages. Most languages with block structure are only able to have local defi-
nitions. TEX’s grouping mechanism is stronger: most assignments made inside a group are
local to that group unless explicitly indicated otherwise, and outside the group old values
are restored.

An example of local definitions

{\def\a{b}}\a

gives an ‘undefined control sequence’ message because \a is only defined inside the group.
Similarly, the code

\count0=1 {\count0=2 } \showthe\count0

will display the value 1; the assignment made inside the group is undone at the end of the
group.

Bookkeeping of values that are to be restored outside the group is done through the me-
chanism of the ‘save stack’. Overflow of the save stack is treated in Chapter 35. The save

105

Chapter 10. Grouping

stack is also used for a few other purposes: in calls such as \hbox to 100pt{...} the
specification to 100pt is put on the save stack before a new level of grouping is opened.

In order to prevent a lot of trouble with the save stack, IniTEX does not allow dumping a
format inside a group. The \end command is allowed to occur inside a group, but TEX will
give a diagnostic message about this.

The \aftergroup control sequence saves a token for insertion after the current group.
Several tokens can be set aside by this command, and they are inserted in the left-to-right
order in which they were stated. This is treated in Chapter 12.

10.2 Local and global assignments
An assignment or macro definition is usually made global by prefixing it with \global, but
non-zero values of the 〈integer parameter〉 \globaldefs override \global specifications:
if \globaldefs is positive every assignment is implicitly prefixed with \global, and if
\globaldefs is negative, \global is ignored. Ordinarily this parameter is zero.

Some assignment are always global: the 〈global assignment〉s are

〈font assignment〉 assignments involving \fontdimen, \hyphenchar, and \skewchar.
〈hyphenation assignment〉 \hyphenation and \patterns commands (see Chapter 19).
〈box size assignment〉 altering box dimensions with \ht, \dp, and \wd (see Chapter 5).
〈interaction mode assignment〉 run modes for a TEX job (see Chapter 32).
〈intimate assignment〉 assignments to a 〈special integer〉 or 〈special dimen〉; see pages

82 and 89.

10.3 Group delimiters
A group can be delimited by character tokens of category code 1 for ‘beginning of group’
and code 2 for ‘end of group’, or control sequence tokens that are \let to such characters,
the \bgroup and \egroup in plain TEX. Implicit and explicit braces can match to delimit
a group.

Groups can also be delimited by \begingroup and \endgroup. These two control se-
quences must be used together: they cannot be matched with implicit or explicit braces,
nor can they function as the braces surrounding, for instance, boxed material.

Delimiting with \begingroup and \endgroup can provide a limited form of run-time
error checking. In between these two group delimiters an excess open or close brace would
result in

\begingroup ... } ... \endgroup

or

\begingroup ... { ... \endgroup

106 Victor Eijkhout – TEX by Topic

10.4. More about braces

In both cases TEX gives an error message about improper balancing. Using \bgroup and
\egroup here would make an error much harder to find, because of the incorrect matching
that would occur. This idea is used in the environment macros of several formats.

The choice of the brace characters for the beginning and end of group characters is not
hard-wired in TEX. It is arranged like this in the plain format:
\catcode‘\{=1 % left brace is begin-group character
\catcode‘\}=2 % right brace is end-group character

Implicit braces have also been defined in the plain format:
\let\bgroup={ \let\egroup=}

Special cases are the following:
• The replacement text of a macro must be enclosed in explicit beginning and end

of group character tokens.
• The open and close braces for boxes, \vadjust, and \insert can be implicit.

This makes it possible to define, for instance
\def\openbox#1{\setbox#1=\hbox\bgroup}
\def\closebox#1{\egroup\box#1}
\openbox{15}Foo bar\closebox{15}

• The right-hand side of a token list assignment and the argument of the commands
\write, \message, \errmessage, \uppercase, \lowercase, \special, and
\mark is a 〈general text〉, defined as

〈general text〉 −→ 〈filler〉{〈balanced text〉〈right brace〉
meaning that the left brace can be implicit, but the closing right brace must be an
explicit character token with category code 2.

In cases where an implicit left brace suffices, and where expansion is not explicitly inhi-
bited, TEX will expand tokens until a left brace is encountered. This is the basis for such
constructs as \uppercase\expandafter{\romannumeral80}, which in this unexpan-
ded form do not adhere to the syntax. If the first unexpandable token is not a left brace TEX
gives an error message.

The grammar of TEX (see Chapter 36) uses 〈left brace〉 and 〈right brace〉 for explicit cha-
racters, that is, character tokens, and { and } for possibly implicit characters, that is, control
sequences that have been \let to such explicit characters.

10.4 More about braces
10.4.1 Brace counters

TEX has two counters for keeping track of grouping levels: the master counter and the ba-
lance counter. Both of these counters are syntactic counters: they count the explicit brace
character tokens, but are not affected by implicit braces (such as \bgroup) that are seman-
tically equivalent to an explicit brace.

The balance counter handles braces in all cases except in alignment. Its workings are intui-
tively clear: it goes up by one for every opening and down for every closing brace that is
not being skipped. Thus

Victor Eijkhout – TEX by Topic 107

Chapter 10. Grouping

\iffalse{\fi

increases the balance counter if this statement is merely scanned (for instance if it appears
in a macro definition text); if this statement is executed the brace is skipped, so there is no
effect on the balance counter.

The master counter is more tricky; it is used in alignments instead of the balance counter.
This counter records all braces, even when they are skipped such as in \iffalse{\fi. For
this counter uncounted skipped braces are still possible: the alphabetic constants ‘{ and ‘}
have no effect on this counter when they are use by the execution processor as a 〈number〉;
they do affect this counter when they are seen by the input processor (which merely sees
characters, and not the context).

10.4.2 The brace as a token

Explicit braces are character tokens, and as such they are unexpandable. This implies that
they survive until the last stages of TEX processing. For example,
\count255=1{2}

will assign 1 to \count255, and print ‘2’, because the opening brace functions as a deli-
miter for the number 1. Similarly
f{f}

will prevent TEX from forming an ‘ff’ ligature.

From the fact that braces are unexpandable, it follows that their nesting is independent of
the nesting of conditionals. For instance
\iftrue{\else}\fi

will give an open brace, as conditionals are handled by expansion. The closing brace is
simply skipped as part of the 〈false text〉; any consequences it has for grouping only come
into play in a later stage of TEX processing.

Undelimited macro arguments are either single tokens or groups of tokens enclosed in
explicit braces. Thus it is not possible for an explicit open or close brace to be a macro
argument. However, braces can be assigned with \let, for instance as in
\let\bgroup={

This is used in the plain \footnote macro (see page 129).

10.4.3 Open and closing brace control symbols

The control sequences \{ and \} do not really belong in this chapter, not being concerned
with grouping. They have been defined with \let as synonyms of \lbrace and \rbrace
respectively, and these control sequences are \delimiter instructions (see Chapter 21).

The Computer Modern Roman font has no braces, but there are braces in the typewriter
font, and for mathematics there are braces of different sizes – and extendable ones – in the
extension font.

108 Victor Eijkhout – TEX by Topic

Chapter 11

Macros

Macros are TEX’s abbreviation mechanism for sequences of commands that are needed
more than once, somewhat like procedures in ordinary programming languages. TEX’s pa-
rameter mechanism, however, is quite unusual. This chapter explains how TEX macros
work. It also treats the commands \let and \futurelet.
\def Start a macro definition.
\gdef Synonym for \global\def.
\edef Start a macro definition; the replacement text is expanded at definition time. This

command is treated also in the next chapter.
\xdef Synonym for \global\edef.
\csname Start forming the name of a control sequence.
\endcsname Stop forming the name of a control sequence.
\global Make the next definition, arithmetic statement, or assignment global.
\outer Prefix indicating that the macro being defined can be used on the ‘outer’ level

only.
\long Prefix indicating that the arguments of the macro being defined may contain \par

tokens.
\let Define a control sequence to be equivalent to the next token.
\futurelet Define a control sequence to be equivalent to the token after the next token.

11.1 Introduction
A macro is basically a sequence of tokens that has been abbreviated into a control sequence.
Statements starting with (among others) \def are called macro definitions, and writing
\def\abc{\de f\g}

defines the macro \abc, with the replacement text \de f\g. Macros can be used in this
way to abbreviate pieces of text or sequences of commands that have to be given more than
once. Any time that TEX’s expansion processor encounters the control sequence \abc, it
replaces it by the replacement text.

If a macro should be sensitive to the context where it is used, it can be defined with para-
meters:

109

Chapter 11. Macros

\def\PickTwo#1#2{(#1,#2)}

takes two arguments and reproduces them in parentheses. The call \PickTwo 12 gives
‘(1,2)’.

The activity of substituting the replacement text for a macro is called macro expansion.

11.2 Layout of a macro definition
A macro definition consists of, in sequence,

1. any number of \global, \long, and \outer prefixes,
2. a 〈def〉 control sequence, or anything that has been \let to one,
3. a control sequence or active character to be defined,
4. possibly a 〈parameter text〉 specifying among other things how many parameters

the macro has, and
5. a replacement text enclosed in explicit character tokens with category codes 1

and 2, by default { and } in plain TEX.

After a macro definition is completed, any saved \afterassignment token (see sec-
tion 12.3.3) is inserted.

The ‘expanding’ definitions \edef and \xdef are treated in Chapter 12.

11.3 Prefixes
There are three prefixes that alter the status of the macro definition:

\global If the definition occurs inside a group, this prefix makes the definition global.
This prefix can also be used for assignments other than macro definitions; in fact,
for macro definitions abbreviations exist obviating the use of \global:

\gdef\foo... is equivalent to \global\def\foo...
and

\xdef\foo... is equivalent to \global\edef\foo...
If the parameter \globaldefs is positive, all assignments are implicitly global;
if \globaldefs is negative any \global prefixes are ignored, and \gdef and
\xdef make local definitions (see Chapter 10).

\outer The mechanism of ‘outer’ macros is supposed to facilitate locating (among other
errors) unbalanced braces: an \outer macro is supposed to appear only in non-
embedded contexts. To be precise, it is not allowed to occur
• in macro replacement texts (but it can appear in for instance \edef after

\noexpand, and after \meaning),
• in parameter texts,
• in skipped conditional text,
• in alignment preambles, and
• in the 〈balanced text〉 of a \message, \write, et cetera.

110 Victor Eijkhout – TEX by Topic

11.4. The definition type

For certain applications, however, it is inconvenient that some of the plain macros
are outer, in particular macros such as \newskip. One remedy is to redefine them,
without the ‘outer’ option, which is done for instance in LATEX, but cleverer tricks
are possible.

\long Ordinarily, macro parameters are not supposed to contain \par tokens. This restric-
tion is useful (much more so than the \outer definitions) in locating forgotten
closing braces. For example, TEX will complain about a ‘runaway argument’ in
the following sequence:
\def\a#1{ ... #1 ... }
\a {This sentence should be in braces.

And this is not supposed to be part of the argument
The empty line generates a \par, which most of the times means that a closing
brace has been forgotten.
If arguments to a particular macro should be allowed to contain \par tokens, then
the macro must be declared to be \long.

The \ifx test for equality of tokens (see Chapter 13) takes prefixes into account when
testing whether two tokens have the same definition.

11.4 The definition type
There are four 〈def〉 control sequences in TEX: \def, \gdef, \edef, and \xdef. The
control sequence \gdef is a synonym for \global\def and \xdef is a synonym for
\global\edef. The ‘expanding definition’ \edef is treated in Chapter 12.

The difference between the various types of macro definitions is only relevant at the time
of the definition. When a macro is called there is no way of telling how it was defined.

11.5 The parameter text
Between the control sequence or active character to be defined and the opening brace of
the replacement text, a 〈parameter text〉 can occur. This specifies whether the macro has
parameters, how many, and how they are delimited. The 〈parameter text〉 cannot contain
explicit braces.

A macro can have at most nine parameters. A parameter is indicated by a parameter token,
consisting of a macro parameter character (that is, a character of category code 6, in plain
TEX #) followed by a digit 1–9. For instance, #6 denotes the sixth parameter of a macro.
Parameter tokens cannot appear outside the context of a macro definition.

In the parameter text, parameters must be numbered consecutively, starting at 1. A space
after a parameter token is significant, both in the parameter text and the replacement text.

Parameters can be delimited or undelimited. A parameter is called undelimited if it is fol-
lowed immediately by another parameter in the 〈parameter text〉 or by the opening brace
of the replacement text; it is called delimited if it is followed by any other token.

Victor Eijkhout – TEX by Topic 111

Chapter 11. Macros

The tokens (zero or more) that are substituted for a parameter when a macro is expanded
(or ‘called’) are called the ‘argument’ corresponding to that parameter.

11.5.1 Undelimited parameters

When a macro with an undelimited parameter, for instance a macro \foo with one para-
meter

\def\foo#1{ ... #1 ...}

is expanded, TEX scans ahead (without expanding) until a non-blank token is found. If this
token is not an explicit 〈left brace〉, it is taken to be the argument corresponding to the
parameter. Otherwise a 〈balanced text〉 is absorbed by scanning until the matching explicit
〈right brace〉 has been found. This balanced text then constitutes the argument.

An example with three undelimited parameters follows: with

\def\foo#1#2#3{#1(#2)#3}

the macro call \foo123 gives ‘1(2)3’; but \foo 1 2 3 also gives the same result. In the
call

\foo 1 2 3

the first space is skipped in the input processor of TEX. The argument corresponding to
the first parameter is then the 1. In order to find the second parameter TEX then skips all
blanks, in this case exactly one. As second parameter TEX finds then the 2. Similarly the
third parameter is 3.

In order to pass several tokens as one undelimited argument one can use braces. With the
above definition of \foo the call \foo a{bc}d gives ‘a(bc)d’. When the argument of a
macro is a balanced text instead of a single token, the delimiting braces are not inserted
when the argument is inserted in the replacement text. For example:

\def\foo#1{\count0=1#1\relax}
\foo{23}

will expand to \count0=123\relax, which assigns the value of 123 to the counter. On
the other hand, the statement

\count0=1{23}

would assign 1 and print 23.

11.5.2 Delimited parameters

Apart from enclosing it in braces there is another way to pass a sequence of tokens as a
single argument to a macro, namely by using delimited parameters.

Any non-parameter tokens in the 〈parameter text〉 occurring after a macro parameter (that
is, after the parameter number following the parameter character) act as a delimiter for
that parameter. This includes space tokens: a space after a parameter number is significant.
Delimiting tokens can also occur between the control sequence being defined and the first
parameter token #1.

112 Victor Eijkhout – TEX by Topic

11.5. The parameter text

Character tokens acting as delimiters in the parameter text have both their character code
and category code stored; the delimiting character tokens of the actual arguments have to
match both. Category codes of such characters may include some that can normally only
appear in special contexts; for instance, after the definition

\def\foo#1_#2^{...}

the macro \foo can be used outside math mode.

When looking for the argument corresponding to a delimited parameter, TEX absorbs all
tokens without expansion (but balancing braces) until the (exact sequence of) delimiting
tokens is encountered. The delimiting tokens are not part of the argument; they are removed
from the input stream during the macro call.

11.5.3 Examples with delimited arguments

As a simple example,

\def\DoASentence#1#2.{{#1#2.}}

defines a macro with an undelimited first parameter, and a second parameter delimited by
a period. In the call

\DoASentence \bf This sentence is the argument.

the arguments are:

#1<-\bf
#2<-This sentence is the argument

Note that the closing period is not in the argument, but it has been absorbed; it is no longer
in the input stream.

A commonly used delimiter is \par:

\def\section#1. #2\par{\medskip\noindent {\bf#1. #2\par}}

This macro has a first parameter that is delimited by ‘. ’, and a second parameter that is
delimited by \par. The call

\section 2.5. Some title

The text of the section...

will give

#1<-2.5
#2<-Some title

Note that there is a space at the end of the second argument generated by the line end. If
this space is unwanted one might define

\def\section#1. #2 \par{...}

with \par delimiting the second argument. This approach, however, precludes the user’s
writing the \par explicitly:

\section 2.5 Some title\par

Victor Eijkhout – TEX by Topic 113

Chapter 11. Macros

One way out of this dilemma is to write #2\unskip on all places in the definition text
where the trailing space would be unwanted.

Control sequences acting as delimiters need not be defined, as they are absorbed without
expansion. Thus
\def\control#1\sequence{...}

is a useful definition, even if \sequence is undefined.

The importance of category codes in delimited arguments is shown by the following exam-
ple:
\def\a#1 #2.{ ... }
\catcode‘\ =12
\a b c
d.

which gives
\a #1 #2.-> ...
#1<- b c
#2<-d

Explanation: the delimiter between parameters 1 and 2 is a space of category 10. In between
a and b there is a space of category 12; the first space of category 10 is the space that is
generated by the line end.

For a ‘real-life’ application of matching of category codes, see the explanation of \newif
in Chapter 13, and the example on page 35.

11.5.4 Empty arguments

If the user specifies a 〈balanced text〉 in braces when TEX expects a macro argument, that
text is used as the argument. Thus, specifying {} will give an argument that is an empty list
of tokens; this is called an ‘empty argument’.

Empty arguments can also arise from the use of delimited parameters. For example, after
the definition
\def\mac#1\ro{ ... }

the call
\mac\ro

will give an empty argument.

11.5.5 The macro parameter character

When TEX’s input processor scans a macro definition text, it inserts a parameter token for
any occurrence of a macro parameter character followed by a digit. In effect, a parameter
token in the replacement text states ‘insert parameter number such and such here’. Two
parameter characters in a row are replaced by a single one.

The latter fact can be used for nested macro definitions. Thus

114 Victor Eijkhout – TEX by Topic

11.5. The parameter text

\def\a{\def\b#1{...}}

gives an error message because \a was defined without parameters, and yet there is a
parameter token in its replacement text.

The following
\def\a#1{\def\b#1{...}}

defines a macro \a that defines a macro \b. However, \b still does not have any parameters:
the call
\a z

defines a macro \b without parameters, that has to be followed by a z. Note that this
does not attempt to define a macro \bz, because the control sequence \b has already been
formed in TEX’s input processor when that input line was read.

Finally,
\def\a{\def\b##1{...}}

defines a macro \b with one parameter.

Let us examine the handling of the parameter character in some detail. Consider
\def\a#1{ .. #1 .. \def\b##1{ ... }}

When this is read as input, the input processor
• replaces the characters #1 by 〈parameter token1〉, and
• replaces the characters ## by #

A macro call of \a will then let the input processor scan
\def\b#1{ ... }

in which the two characters #1 are replaced by a parameter token.

11.5.6 Brace delimiting

Ordinarily, it is not possible to have left or right braces in the 〈parameter text〉 of a defini-
tion. There is a special mechanism, however, that can make the last parameter of a macro
act as if it is delimited by an opening brace.

If the last parameter token is followed by a parameter character (#), which in turn is fol-
lowed by the opening brace of the replacement text, TEX makes the last parameter be de-
limited by a beginning-of-group character. Furthermore, unlike other delimiting tokens in
parameter texts, this opening brace is not removed from the input stream.

Consider an example. Suppose we want to have a macro \every that can fill token lists as
follows:
\every par{abc} \every display{def}

This macro can be defined as
\def\every#1#{\csname every#1\endcsname}

In the first call above, the argument corresponding to the parameter is abc, so the call
expands to
\csname everypar\endcsname{abc}

which gives the desired result.

Victor Eijkhout – TEX by Topic 115

Chapter 11. Macros

11.6 Construction of control sequences
The commands \csname and \endcsname can be used to construct a control sequence.
For instance

\csname hskip\endcsname 5pt

is equivalent to \hskip5pt.

During this construction process all macros and other expandable control sequences bet-
ween \csname and \endcsname are expanded as usual, until only unexpandable character
tokens remain. A variation of the above example,

\csname \ifhmode h\else v\fi skip\endcsname 5pt

performs an \hskip or \vskip depending on the mode. The final result of the expansion
should consist of only character tokens, but their category codes do not matter. An unex-
pandable control sequence gives an error here: TEX will insert an \endcsname right before
it as an attempt at error recovery.

With \csname it is possible to construct control sequences that cannot ordinarily be written,
because the constituent character tokens may have another category than 11, letter. This
principle can be used to hide inner control sequences of a macro package from the user.

\def\newcounter#1{\expandafter\newcount
\csname #1:counter\endcsname}

\def\stepcounter#1{\expandafter\advance
\csname #1:counter\endcsname 1\relax}

In the second definition the \expandafter is superfluous, but it does no
harm, and it is conceptually clearer.

The name of the actual counter created by \newcounter contains a colon, so that it takes
some effort to write this control sequence. In effect, the counter is now hidden from the
user, who can only access it through control sequences such as \stepcounter. By the
way, the macro \newcount is defined \outer in the plain format, so the above definition
of \newcounter can only be written after \newcount has been redefined.

If a control sequence formed with \csname...\endcsname has not been defined before,
its meaning is set to \relax. Thus if \xx is an undefined control sequence, the command

\csname xx\endcsname

will not give an error message, as it is equivalent to \relax. Moreover, after this execution
of the \csname...\endcsname statement, the control sequence \xx is itself equivalent to
\relax, so it will no longer give an ‘undefined control sequence’ error (see also page 131).

11.7 Token assignments by \let and \futurelet

There are two 〈let assignment〉s in TEX. Their syntax is

\let〈control sequence〉〈equals〉〈one optional space〉〈token〉
\futurelet〈control sequence〉〈token〉〈token〉

In the syntax of a \futurelet assignment no optional equals sign appears.

116 Victor Eijkhout – TEX by Topic

11.8. Assorted remarks

11.7.1 \let

The primitive command \let assigns the current meaning of a token to a control sequence
or active character.

For instance, in the plain format \endgraf is defined as

\let\endgraf=\par

This enables macro writers to redefine \par, while still having the functionality of the
primitive \par command available. For example,

\everypar={\bgroup\it\def\par{\endgraf\egroup}}

The case where the 〈token〉 to be assigned is not a control sequence but a character token
instead has been treated in Chapter 3.

11.7.2 \futurelet

As was explained above, the sequence with \let

\let〈control sequence〉〈token1〉〈token2〉〈token3〉〈token· · ·〉
assigns (the meaning of) 〈token1〉 to the control sequence, and the remaining input stream
looks like

〈token2〉〈token3〉〈token· · ·〉
That is, the 〈token1〉 has disappeared from the stream.

The command \futurelet works slightly differently: given the input stream

\futurelet〈control sequence〉〈token1〉〈token2〉〈token3〉〈token· · ·〉
it assigns (the meaning of) 〈token2〉 to the control sequence, and the remaining stream
looks like

〈token1〉〈token2〉〈token3〉〈token· · ·〉
That is, neither 〈token1〉 nor 〈token2〉 has been lifted from the stream. However, now
〈token1〉 ‘knows’ what 〈token2〉 is, without having had to absorb it as a macro parame-
ter. See an example below.

If a character token has been \futurelet to a control sequence, its category code is fixed.
The subsequent 〈token1〉 cannot change it anymore.

11.8 Assorted remarks
11.8.1 Active characters

Character tokens of category 13, ‘active characters’, can be defined just like control se-
quences. If the definition of the character appears inside a macro, the character has to be
active at the time of the definition of that macro.

Consider for example the following definition (taken from Chapter 2):

Victor Eijkhout – TEX by Topic 117

Chapter 11. Macros

{\catcode‘\^^M=13 %
\gdef\obeylines{\catcode‘\^^M=13 \def^^M{\par}}%
}

The unusual category of the ^^M character has to be set during the definition of \obeylines,
otherwise TEX would think that the line ended after \def.

11.8.2 Macros versus primitives

The distinction between primitive commands and user macros is not nearly as important in
TEX as it is in other programming languages.
• The user can use primitive commands under different names:

\let\StopThisParagraph=\par
• Names of primitive commands can be used for user macros:

\def\par{\hfill\bullet\endgraf}
• Both user macros and a number of TEX primitives are subject to expansion, for

instance all conditionals, and commands such as \number and \jobname.

11.8.3 Tail recursion

Macros in TEX, like procedures in most modern programming languages, are allowed to
be recursive: that is, the definition of a macro can contain a call to this same macro, or to
another macro that will call this macro. Recursive macros tend to clutter up TEX’s memory
if too many ‘incarnations’ of such a macro are active at the same time. However, TEX is
able to prevent this in one frequently occurring case of recursion: tail recursion.

In order to appreciate what goes on here, some background knowledge is needed. When
TEX starts executing a macro it absorbs the parameters, and places an item pointing to
the replacement text on the input stack, so that the scanner will next be directed to this
replacement. Once it has been processed, the item on the input stack can be removed.
However, if the definition text of a macro contains further macros, this process will be
repeated for them: new items may be placed on the input stack directing the scanner to
other macros even before the first one has been completed.

In general this ‘stack build-up’ is a necessary evil, but it can be prevented if the nested
macro call is the last token in the replacement text of the original macro. After the last
token no further tokens need to be considered, so one might as well clear the top item from
the input stack before a new one is put there. This is what TEX does.

The \loop macro of plain TEX provides a good illustration of this principle. The definition
is
\def\loop#1\repeat{\def\body{#1}\iterate}
\def\iterate{\body \let\next=\iterate

\else \let\next=\relax\fi \next}

and this macro can be called for example as follows:
\loop \message{\number\MyCount}

\advance\MyCount by 1
\ifnum\MyCount<100 \repeat

118 Victor Eijkhout – TEX by Topic

11.9. Macro techniques

The macro \iterate can call itself and, when it does so, the recursive call is performed
by the last token in the list. It would have been possible to define \iterate as
\def\iterate{\body \iterate\fi}

but then TEX would not have been able to resolve the recursion as the call \iterate is not
the last token in the replacement text of \iterate. Assigning \let\next=\iterate is
here a way to let the recursive call be the last token in the list.

Another way of resolving tail recursion is to use \expandafter (see page 147): in
\def\iterate{\body \expandafter\iterate\fi}

it removes the \fi token. Tail recursion would also be resolved if the last tokens in the list
were arguments for the recursive macro.

An aside: by defining \iterate as
\def\iterate{\let\next\relax

\body \let\next\iterate \fi \next}

it becomes possible to write
\loop ... \if... ... \else ... \repeat

11.9 Macro techniques
11.9.1 Unknown number of arguments

In some applications, a macro is needed that can have a number of arguments that is not
specified in advance.

Consider the problem of translating a position on a chess board (for full macros and fonts,
see [37] and [47]), given like
\White(Ke1,Qd1,Na1,e2,f4)

to a sequence of typesetting instructions
\WhitePiece{K}{e1} \WhitePiece{Q}{d1} \WhitePiece{N}{a1}
\WhitePiece{P}{e2} \WhitePiece{P}{f4}

Note that for pawns the ‘P’ is omitted in the list of positions.

The first problem is that the list of pieces is of variable length, so we append a terminator
piece:
\def\White(#1){\xWhite#1,xxx,}
\def\endpiece{xxx}

for which we can test. Next, the macro \xWhite takes one position from the list, tests
whether it is the terminator, and if not, subjects it to a test to see whether it is a pawn.
\def\xWhite#1,{\def\temp{#1}%

\ifx\temp\endpiece
\else \WhitePieceOrPawn#1XY%

\expandafter\xWhite
\fi}

Victor Eijkhout – TEX by Topic 119

Chapter 11. Macros

An \expandafter command is necessary to remove the \fi (see page 147), so that
\xWhite will get the next position as argument instead of \fi.

Positions are either two or three characters long. The call to \WhitePieceOrPawn, a four-
parameter macro, appended a terminator string XY. In the case of a pawn, therefore, argu-
ment 3 is the character X and argument 4 is empty; for all other pieces argument 1 is the
piece, 2 and 3 are the position, and argument 4 is X.
\def\WhitePieceOrPawn#1#2#3#4Y{

\if#3X \WhitePiece{P}{#1#2}%
\else \WhitePiece{#1}{#2#3}\fi}

11.9.2 Examining the argument

It may be necessary in some cases to test whether a macro argument contains some element.
For a real-life example, consider the following (see also the \DisplayEquation example
on page 214).

Suppose the title and author of an article are given as
\title{An angle trisector}
\author{A.B. Cee\footnote*{Research supported by the
Very Big Company of America}}

with multiple authors given as
\author{A.B. Cee\footnote*{Supported by NSF grant 1}

\and
X.Y. Zee\footnote{**}{Supported by NATO grant 2}}

Suppose further that the \title and \author macros are defined as
\def\title#1{\def\TheTitle{#1}} \def\author#1{\def\TheAuthor{#1}}

which will be used as
\def\ArticleHeading{ ... \TheTitle ... \TheAuthor ... }

For some journals it is required to have the authorship and the title of the article in all
capitals. The implementation of this could be
\def\ArticleCapitalHeading

{ ...
\uppercase\expandafter{\TheTitle}
...
\uppercase\expandafter{\TheAuthor}
...

}

Now the \expandafter commands will expand the title and author into the actual texts,
and the \uppercase commands will capitalize them. However, for the authors this is
wrong, since the \uppercase command will also capitalize the footnote texts. The pro-
blem is then to uppercase only the parts of the title in between the footnotes.

As a first attempt, let us take the case of one author, and let the basic call be
\expandafter\UCnoFootnote\TheAuthor

120 Victor Eijkhout – TEX by Topic

11.9. Macro techniques

This expands into
\UCnoFootnote A.B. Cee\footnote*{Supported ... }

The macro
\def\UCnoFootnote#1\footnote#2#3{\uppercase{#1}\footnote{#2}{#3}}

will analyse this correctly:
#1<-A.B. Cee
#2<-*
#3<-Supported ...

However, if there is no footnote, this macro is completely wrong.

As a first refinement we add a footnote ourselves, just to make sure that one is present:
\expandafter\UCnoFootnote\TheAuthor\footnote 00

Now we have to test what kind of footnote we find:
\def\stopper{0}
\def\UCnoFootnote#1\footnote#2#3{\uppercase{#1}\def\tester{#2}%

\ifx\stopper\tester
\else\footnote{#2}{#3}\fi}

With \ifx we test the delimiter footnote sign against the actual sign encountered. Note
that a solution with
\ifx0#2

would be wrong if the footnote sign consists of more than one token, for instance {**}.

The macro so far is correct if there was no footnote, but if there was one it is wrong:
the terminating tokens remain to be disposed of. They are taken care of in the following
version:
\def\stopper{0}
\def\UCnoFootnote#1\footnote#2#3{\uppercase{#1}\def\tester{#2}%

\ifx\stopper\tester
\else\footnote{#2}{#3}\expandafter\UCnoFootnote
\fi}

A repeated call to \UCnoFootnote removes the delimiter tokens (the \expandafter first
removes the \fi), and as an added bonus, this macro is also correct for multiple authors.

11.9.3 Optional macro parameters with \futurelet

One standard application of \futurelet is implementing optional parameters of macros.
The general course of action is as follows:
\def\Com{\futurelet\testchar\MaybeOptArgCom}
\def\MaybeOptArgCom{\ifx[\testchar \let\next\OptArgCom

\else \let\next\NoOptArgCom \fi \next}
\def\OptArgCom[#1]#2{ ... }\def\NoOptArgCom#1{ ... }

Note that \ifx is used even though it tests for a character. The reason is of course that, if
the optional argument is omitted, there might be an expandable control sequence behind
the \Com.

Victor Eijkhout – TEX by Topic 121

Chapter 11. Macros

The macro \Com now has one optional and one regular argument; it can be called as

\Com{argument}

or as

\Com[optional]{argument}

Often the call without the optional argument will insert some default value:

\def\NoOptArgCom#1{\OptArgCom[default]{#1}}

This mechanism is widely used in formats such as LATEX and LAMSTEX; see also [49].

11.9.4 Two-step macros

Often what looks to the user like one macro is in reality a two-step process, where one
macro will set up conditions, and a second macro will do the work.

As an example, here is a macro \PickToEol with an argument that is delimited by the line
end. First we write a macro without arguments that changes the category code of the line
end, and then calls the second macro.

\def\PickToEol{\begingroup\catcode‘\^^M=12 \xPickToEol}

The second macro can then take as an argument everything up to the end of the line:

\def\xPickToEol#1^^M{ ... #1 ... \endgroup}

There is one problem with this definition: the ^^M character should have category 12. We
arrive at the following:

\def\PickToEol{\begingroup\catcode‘\^^M=12 \xPickToEol}
{\catcode‘\^^M=12 %
\gdef\xPickToEol#1^^M{ ... #1 ... \endgroup}%

}

where the category code of ^^M is changed for the sake of the definition of \xPickToEol.
Note that the ^^M in \PickToEol occurs in a control symbol, so there the category code
is irrelevant. Therefore that definition can be outside the group where the category code of
^^M is redefined.

11.9.5 A comment environment

As an application of the above idea of two-step macros, and in order to illustrate tail recur-
sion, here are macros for a ‘comment’ environment.

Often it is necessary to remove a part of TEX input temporarily. For this one would like to
write

\comment
...
\endcomment

The simplest implementation of this,

\def\comment#1\endcomment{}

122 Victor Eijkhout – TEX by Topic

11.9. Macro techniques

has a number of weaknesses. For instance, it cannot cope with outer macros or input that
does not have balanced braces. Its worst shortcoming, however, is that it reads the complete
comment text as a macro argument. This limits the size of the comment to that of TEX’s
input buffer.

It would be a better idea to take on the out-commented text one line at a time. For this we
want to write a recursive macro with a basic structure

\def\comment#1^^M{ ... \comment }

In order to be able to write this definition at all, the category code of the line end must be
changed; as above we will have

\def\comment{\begingroup \catcode‘\^^M=12 \xcomment}
{\catcode‘\^^M=12 \endlinechar=-1 %
\gdef\xcomment#1^^M{ ... \xcomment}
}

Changing the \endlinechar is merely to prevent having to put comment characters at the
end of every line of the definition.

Of course, the process must stop at a certain time. To this purpose we investigate the line
that was scooped up as macro argument:

{\catcode‘\^^M=12 \endlinechar=-1 %
\gdef\xcomment#1^^M{\def\test{#1}

\ifx\test\endcomment \let\next=\endgroup
\else \let\next=\xcomment \fi
\next}

}

and we have to define \endcomment:

\def\endcomment{\endcomment}

This command will never be executed: it is merely for purposes of testing whether the end
of the environment has been reached.

We may want to comment out text that is not syntactically correct. Therefore we switch to
a verbatim mode when commenting. The following macro is given in plain TEX:

\def\dospecials{\do\ \do\\\do\{\do\}\do\$\do\&%
\do\#\do\^\do\^^K\do_\do\^^A\do\%\do\~}

We use it to define \comment as follows:

\def\makeinnocent#1{\catcode‘#1=12 }
\def\comment{\begingroup

\let\do=\makeinnocent \dospecials
\endlinechar‘\^^M \catcode‘\^^M=12 \xcomment}

Apart from the possibility mentioned above of commenting out text that is not syntactically
correct, for instance because of unmatched braces, this solution can handle outer macros.
The former implementation of \xcomment would cause a TEX error if one occurred in the
comment text.

Victor Eijkhout – TEX by Topic 123

Chapter 11. Macros

However, using verbatim mode poses the problem of concluding the environment. The
final line of the comment is now not the control sequence \endcomment, but the characters
constituting it. We have to test for these then:
{\escapechar=-1
\xdef\endcomment{\string\\endcomment}
}

The sequence \string\\ gives a backslash. We could not have used
\edef\endcomment{\string\endcomment}

because the letters of the word endcomment would then have category code 12, instead of
the 11 that the ones on the last line of the comment will have.

124 Victor Eijkhout – TEX by Topic

Chapter 12

Expansion

Expansion in TEX is rather different from procedure calls in most programming languages.
This chapter treats the commands connected with expansion, and gives a number of (non-
trivial) examples.

\relax Do nothing.
\expandafter Take the next two tokens and place the expansion of the second after the

first.
\noexpand Do not expand the next token.
\edef Start a macro definition; the replacement text is expanded at definition time.
\aftergroup Save the next token for insertion after the current group.
\afterassignment Save the next token for execution after the next assignment or macro

definition.
\the Expand the value of various quantities in TEX into a string of character tokens.

12.1 Introduction
TEX’s expansion processor accepts a stream of tokens coming out of the input processor,
and its result is again a stream of tokens, which it feeds to the execution processor. For
the input processor there are two kinds of tokens: expandable and unexpandable ones. The
latter category is passed untouched, and it contains largely assignments and typesettable
material; the former category is expanded, and the result of that expansion is examined
anew.

12.2 Ordinary expansion
The following list gives those constructs that are expanded, unless expansion is inhibited:

• macros
• conditionals
• \number, \romannumeral
• \string, \fontname, \jobname, \meaning, \the

125

Chapter 12. Expansion

• \csname ... \endcsname
• \expandafter, \noexpand
• \topmark, \botmark, \firstmark, \splitfirstmark, \splitbotmark
• \input, \endinput

This is the list of all instances where expansion is inhibited:

• when TEX is reading a token to be defined by
– a 〈let assignment〉, that is, by \let or \futurelet,
– a 〈shorthand definition〉, that is, by \chardef or \mathchardef, or a 〈register

def〉, that is, \countdef, \dimendef, \skipdef, \muskipdef, or \toksdef,
– a 〈definition〉, that is a macro definition with \def, \gdef, \edef, or \xdef,
– the 〈simple assignment〉s \read and \font;

• when a 〈parameter text〉 or macro arguments are being read; also when the re-
placement text of a control sequence being defined by \def, \gdef, or \read is
being read;

• when the token list for a 〈token variable〉 or \uppercase, \lowercase, or \write
is being read; however, the token list for \write will be expanded later when it is
shipped out;

• when tokens are being deleted during error recovery;
• when part of a conditional is being skipped;
• in two instances when TEX has to know what follows

– after a left quote in a context where that is used to denote an integer (thus in
\catcode‘\a the \a is not expanded), or

– after a math shift character that begins math mode to see whether another
math shift character follows (in which case a display opens);

• when an alignment preamble is being scanned; however, in this case a token pre-
ceded by \span and the tokens in a \tabskip assignment are still expanded.

12.3 Reversing expansion order
Every once in a while you need to change the normal order of expansion of tokens. TEX
provides several mechanisms for this. Some of the control sequences in this section are not
strictly concerned with expansion.

12.3.1 One step expansion: \expandafter

The most obvious tool for reversed expansion order is \expandafter. The sequence

\expandafter〈token1〉〈token2〉
expands to

〈token1〉〈the expansion of token2〉
Note the following.

• If 〈token2〉 is a macro, it is replaced by its replacement text, not by its final expan-
sion. Thus, if

126 Victor Eijkhout – TEX by Topic

12.3. Reversing expansion order

\def\tokentwo{\ifsomecondition this \else that \fi}
\def\tokenone#1{ ... }
the call
\expandafter\tokenone\tokentwo
will give \ifsomecondition as the parameter to \tokenone:
\tokenone #1-> ...
#1<-\ifsomecondition

• If the \tokentwo is a macro with one or more parameters, sufficiently many sub-
sequent tokens will be absorbed to form the replacement text.

12.3.2 Total expansion: \edef

Macros are usually defined by \def, but for the cases where one wants the replacement
text to reflect current conditions (as opposed to conditions at the time of the call), there is
an ‘expanding define’, \edef, which expands everything in the replacement text, before
assigning it to the control sequence.

\edef\modedef{This macro was defined in
‘\ifvmode vertical\else \ifmmode math
\else horizontal\fi\fi’ mode}

The mode tests will be executed at definition time, so the replacement
text will be a single string.
As a more useful example, suppose that in a file that will be \input the
category code of the @ will be changed. One could then write
\edef\restorecat{\catcode‘@=\the\catcode‘@}
at the start, and
\restorecat
at the end. See page 137 for a fully worked-out version of this.

Contrary to the ‘one step expansion’ of \expandafter, the expansion inside an \edef is
complete: it goes on until only unexpandable character and control sequence tokens remain.
There are two exceptions to this total expansion:
• any control sequence preceded by \noexpand is not expanded, and,
• if \sometokenlist is a token list, the expression

\the\sometokenlist
is expanded to the contents of the list, but the contents are not expanded any further
(see Chapter 14 for examples).

On certain occasions the \edef can conveniently be abused, in the sense that one is not in-
terested in defining a control sequence, but only in the result of the expansion. For example,
with the definitions
\def\othermacro{\ifnum1>0 {this}\else {that}\fi}
\def\somemacro#1{ ... }

the call
\expandafter\somemacro\othermacro

gives the parameter assignment
#1<-\ifnum

Victor Eijkhout – TEX by Topic 127

Chapter 12. Expansion

This can be repaired by calling

\edef\next{\noexpand\somemacro\othermacro}\next

Conditionals are completely expanded inside an \edef, so the replacement text of \next
will consist of the sequence

\somemacro{this}

and a subsequent call to \next executes this statement.

12.3.3 \afterassignment

The command takes one token and sets it aside for insertion in the token stream after the
next assignment or macro definition. If the first assignment is of a box to a box register, the
token will be inserted right after the opening brace of the box (see page 66).

Only one token can be saved this way; a subsequent token saved by \afterassignment
will override the first.

Let us consider an example of the use of \afterassignment. It is often desirable to have
a macro that will

• assign the argument to some variable, and then
• do a little calculation, based on the new value of the variable.

The following example illustrates the straightforward approach:

\def\setfontsize#1{\thefontsize=#1pt\relax
\baselineskip=1.2\thefontsize\relax}

\setfontsize{10}

A more elegant solution is possible using \afterassignment:

\def\setbaselineskip
{\baselineskip=1.2\thefontsize\relax}

\def\fontsize{\afterassignment\setbaselineskip
\thefontsize}

\fontsize=10pt

Now the macro looks like an assignment: the equals sign is even optional. In reality its ex-
pansion ends with a variable to be assigned to. The control sequence \setbaselineskip
is saved for execution after the assignment to \thefontsize.

Examples of \afterassignment in plain TEX are the \magnification and \hglue ma-
cros. See [31] for another creative application of this command.

12.3.4 \aftergroup

Several tokens can be saved for insertion after the current group with an

\aftergroup〈token〉
command. The tokens are inserted after the group in the sequence the \aftergroup com-
mands were given in. The group can be delimited either by implicit or explicit braces, or
by \begingroup and \endgroup.

128 Victor Eijkhout – TEX by Topic

12.4. Preventing expansion

{\aftergroup\a \aftergroup\b}
is equivalent to
\a \b

This command has many applications. One can be found in the \textvcenter macro on
page 138; another one is provided by the footnote mechanism of plain TEX.

The footnote command of plain TEX has the layout
\footnote〈footnote symbol〉{〈footnote text〉}

which looks like a macro with two arguments. However, it is undesirable to scoop up the
footnote text, since this precludes for instance category code changes in the footnote.

What happens in the plain footnote macro is (globally) the following.
• The \footnote command opens an insert,

\def\footnote#1{ ...#1... %treat the footnote sign
\insert\footins\bgroup

• In the insert box a group is opened, and an \aftergroup command is given to
close off the insert properly:

\bgroup\aftergroup\@foot
This command is meant to wind up after the closing brace of the text that the user
typed to end the footnote text; the opening brace of the user’s footnote text must
be removed by

\let\next=}%end of definition \footnote
which assigns the next token, the brace, to \next.

• The footnote text is set as ordinary text in this insert box.
• After the footnote the command \@foot defined by

\def\@foot{\strut\egroup}
will be executed.

12.4 Preventing expansion
Sometimes it is necessary to prevent expansion in a place where it normally occurs. For
this purpose the control sequences \string and \noexpand are available.

The use of \string is rather limited, since it converts a control sequence token into a string
of characters, with the value of \escapechar used for the character of category code 0. It
is eminently suitable for use in a \write, in order to output a control sequence name (see
also Chapter 30); for another application see the explanation of \newif in Chapter 13.

All characters resulting from \string have category code 12, ‘other’, except for space
characters; they receive code 10. See also Chapter 3.

12.4.1 \noexpand

The \noexpand command is expandable, and its expansion is the following token. The
meaning of that token is made temporarily equal to \relax, so that it cannot be expanded
further.

Victor Eijkhout – TEX by Topic 129

Chapter 12. Expansion

For \noexpand the most important application is probably in \edef commands (but in
write statements it can often replace \string). Consider as an example
\edef\one{\def\noexpand\two{\the\prevdepth}}

Without the \noexpand, TEX would try to expand \two, thus giving an ‘undefined control
sequence’ error.

A (rather pointless) illustration of the fact that \noexpand makes the following token ef-
fectively into a \relax is
\def\a{b}
\noexpand\a

This will not produce any output, because the effect of the \noexpand is to make the
control sequence \a temporarily equal to \relax.

12.4.2 \noexpand and active characters

The combination \noexpand〈token〉 is equivalent to \relax, even if the token is an active
character. Thus,
\csname\noexpand~\endcsname

will not be the same as \char‘\~. Instead it will give an error message, because unexpan-
dable commands – such as \relax – are not allowed to appear in between \csname and
\endcsname. The solution is to use \string instead; see page 137 for an example.

In another context, however, the sequence \noexpand〈active character〉 is equivalent to
the character, but in unexpandable form. This is when the conditionals \if and \ifcat are
used (for an explanation of these, see Chapter 13). Compare
\if\noexpand~\relax % is false

where the character code of the tilde is tested, with
\def\a{ ... } \if\noexpand\a\relax % is true

where two control sequences are tested.

12.5 \relax

The control sequence \relax cannot be expanded, but when it is executed nothing hap-
pens.

This statement sounds a bit paradoxical, so consider an example. Let counters
\newcount\MyCount
\newcount\MyOtherCount \MyOtherCount=2

be given. In the assignment
\MyCount=1\number\MyOtherCount3\relax4

the command \number is expandable, and \relax is not. When TEX constructs the number
that is to be assigned it will expand all commands, either until a non-digit is found, or until
an unexpandable command is encountered. Thus it reads the 1; it expands the sequence

130 Victor Eijkhout – TEX by Topic

12.5. \relax

\number\MyOtherCount, which gives 2; it reads the 3; it sees the \relax, and as this is
unexpandable it halts. The number to be assigned is then 123, and the whole call has been
expanded into

\MyCount=123\relax4

Since the \relax token has no effect when it is executed, the result of this line is that 123
is assigned to \MyCount, and the digit 4 is printed.

Another example of how \relax can be used to indicate the end of a command is

\everypar{\hskip 0cm plus 1fil }
\indent Later that day, ...

This will be misunderstood: TEX will see

\hskip 0cm plus 1fil L

and fil L is a valid, if bizarre, way of writing fill (see Chapter 36). One remedy is to
write

\everypar{\hskip 0cm plus 1fil\relax}

12.5.1 \relax and \csname

If a \csname ... \endcsname command forms the name of a previously undefined con-
trol sequence, that control sequence is made equal to \relax, and the whole statement is
also equivalent to \relax (see also page 116).

However, this assignment of \relax is only local:

{\xdef\test{\expandafter\noexpand\csname xx\endcsname}}
\test

gives an error message for an undefined control sequence \xx.

Consider as an example the LATEX environments, which are delimited by

\begin{...} ... \end{...}

The begin and end commands are (in essence) defined as follows:

\def\begin#1{\begingroup\csname#1\endcsname}
\def\end#1{\csname end#1\endcsname \endgroup}

Thus, for the list environment the commands \list and \endlist are defined, but any
command can be used as an environment name, even if no corresponding \end... has
been defined. For instance,

\begin{it} ... \end{it}

is equivalent to

\begingroup\it ... \relax\endgroup

See page 106 for the rationale behind using \begingroup and \endgroup instead of
\bgroup and \egroup.

Victor Eijkhout – TEX by Topic 131

Chapter 12. Expansion

12.5.2 Preventing expansion with \relax

Because \relax cannot be expanded, a control sequence can be prevented from being ex-
panded (for instance in an \edef or a \write) by making it temporarily equal to \relax:

{\let\somemacro=\relax \write\outfile{\somemacro}}

will write the string ‘\somemacro’ to an output file. It would write the expansion of the ma-
cro \somemacro (or give an error message if the macro is undefined) if the \let statement
had been omitted.

12.5.3 TEX inserts a \relax

TEX itself inserts \relax on some occasions. For instance, \relax is inserted if TEX en-
counters an \or, \else, or \fi while still determining the extent of the test.

\ifvoid1\else ... \fi
is changed into
\ifvoid1\relax \else ...\fi
internally.

Similarly, if one of the tests \if, \ifcat is given only one comparand, as in

\if1\else ...

a \relax token is inserted. Thus this test is equivalent to

\if1\relax\else ...

Another place where \relax is used is the following. While a control sequence is being de-
fined in a 〈shorthand definition〉 – that is, a 〈registerdef〉 or \chardef or \mathchardef –
its meaning is temporarily made equal to \relax. This makes it possible to write \chardef\foo=123\foo.

12.5.4 The value of non-macros; \the

Expansion is a precisely defined activity in TEX. The full list of tokens that can be expanded
was given above. Other tokens than those in the above list may have an ‘expansion’ in an
informal sense. For instance one may wish to ‘expand’ the \parindent into its value,
say 20pt.

Converting the value of (among others) an 〈integer parameter〉, a 〈glue parameter〉, 〈dimen
parameter〉 or a 〈token parameter〉 into a string of character tokens is done by the expansion
processor. The command \the is expanded whenever expansion is not inhibited, and it
takes the value of various sorts of parameters. Its result (in most cases) is a string of tokens
of category 12, except that spaces have category code 10.

Here is the list of everything that can be prefixed with \the.

〈parameter〉 or 〈register〉 If the parameter or register is of type integer, glue, dimen or
muglue, its value is given as a string of character tokens; if it is of type token list
(for instance \everypar or \toks5), the result is a string of tokens. Box registers
are excluded here.

〈codename〉〈8-bit number〉 See page 49.

132 Victor Eijkhout – TEX by Topic

12.6. Examples

〈special register〉 The integer registers \prevgraf, \deadcycles, \insertpenalties
\inputlineno, \badness, \parshape, \spacefactor (only in horizontal mode),
or \prevdepth (only in vertical mode). The dimension registers \pagetotal,
\pagegoal, \pagestretch, \pagefilstretch, \pagefillstretch, \pagefilllstretch,
\pageshrink, or \pagedepth.

Font properties: \fontdimen〈parameter number〉〈font〉, \skewchar〈font〉, \hyphenchar〈font〉.
Last quantities: \lastpenalty, \lastkern, \lastskip.
〈defined character〉 Any control sequence defined by \chardef or \mathchardef; the

result is the decimal value.
In some cases \the can give a control sequence token or list of such tokens.
〈font〉 The result is the control sequence that stands for the font.
〈token variable〉 Token list registers and 〈token parameter〉s can be prefixed with \the;

the result is their contents.
Let us consider an example of the use of \the. If in a file that is to be \input the category
code of a character, say the at sign, is changed, one could write
\edef\restorecat{\catcode‘@=\the\catcode‘@}

and call \restorecat at the end of the file. If the category code was 11, \restorecat is
defined equivalent to
\catcode‘@=11

See page 137 for more elaborate macros for saving and restoring catcodes.

12.6 Examples
12.6.1 Expanding after

The most obvious use of \expandafter is to reach over a control sequence:
\def\stepcounter

#1{\expandafter\advance\csname
#1:counter\endcsname 1\relax}

\stepcounter{foo}

Here the \expandafter lets the \csname command form the control sequence \foo:counter;
after \expandafter is finished the statement has reduced to
\advance\foo:counter 1\relax

It is possible to reach over tokens other than control sequences: in
\uppercase\expandafter{\romannumeral \year}

it expands \romannumeral on the other side of the opening brace.

You can expand after two control sequences:
\def\globalstepcounter

#1{\expandafter\global\expandafter\advance
\csname #1:counter\endcsname 1\relax}

If you think of \expandafter as reversing the evaluation order of two control sequences,
you can reverse three by

Victor Eijkhout – TEX by Topic 133

Chapter 12. Expansion

\expandafter\expandafter\expandafter\a\expandafter\b\c

which reaches across the three control sequences
\expandafter \a \b

to expand \c first.

There is even an unexpected use for \expandafter in conditionals; with
\def\bold#1{{\bf #1}}

the sequence
\ifnum1>0 \bold \fi {word}

will not give a boldface ‘word’, but
\ifnum1>0 \expandafter\bold \fi {word}

will. The \expandafter lets TEX see the \fi and remove it before it tackles the macro
\bold (see also page 147).

12.6.2 Defining inside an \edef

There is one TEX command that is executed instead of expanded that is worth pointing out
explicitly: the primitive command \def (and all other 〈def〉 commands) is not expanded.

Thus the call
\edef\next{\def\thing{text}}

will give an ‘undefined control sequence’ for \thing, even though after \def expansion is
ordinarily inhibited (see page 126). After
\edef\next{\def\noexpand\thing{text}}

the ‘meaning’ of \next will be
macro: \def \thing {text}

The definition
\edef\next{\def\noexpand\thing{text}\thing}

will again give an ‘undefined control sequence’ for \thing (this time on its second occur-
rence), as it will only be defined when \next is called, not when \next is defined.

12.6.3 Expansion and \write

The argument token list of \write is treated in much the same way as the replacement text
of an \edef; that is, expandable control sequences and active characters are completely
expanded. Unexpandable control sequences are treated by \write as if they are prefixed
by \string.

Because of the expansion performed by \write, some care has to be taken when outputting
control sequences with \write. Even more complications arise from the fact that the ex-
pansion of the argument of \write is only performed when it is shipped out. Here follows
a worked-out example.

Suppose \somecs is a macro, and you want to write the string

134 Victor Eijkhout – TEX by Topic

12.6. Examples

\def\othercs{the expansion of \somecs}
to a file.

The first attempt is
\write\myfile{\def\othercs{\somecs}}

This gives an error ‘undefined control sequence’ for \othercs, because the \write will
try to expand that token. Note that the \somecs is also expanded, so that part is right.

The next attempt is
\write\myfile{\def\noexpand\othercs{\somecs}}

This is almost right, but not quite. The statement written is
\def\othercs{expansion of \somecs}

which looks right.

However, writes – and the expansion of their argument – are not executed on the spot, but
saved until the part of the page on which they occur is shipped out (see Chapter 30). So, in
the meantime, the value of \somecs may have changed. In other words, the value written
may not be the value at the time the \write command was given. Somehow, therefore, the
current expansion must be inserted in the write command.

The following is an attempt at repair:
\edef\act{\write\myfile{\def\noexpand\othercs{\somecs}}}
\act

Now the write command will be
\write\myfile{\def\othercs{value of \somecs}}

The \noexpand prevented the \edef from expanding the \othercs, but after the defini-
tion it has disappeared, so that execution of the write will again give an undefined control
sequence. The final solution is
\edef\act{\write\myfile

{\def \noexpand\noexpand \noexpand\othercs{\somecs}}}
\act

In this case the write command caused by the expansion of \act will be
\write\myfile{\def\noexpand\othercs{current value of \somecs}

and the string actually written is
\def\othercs{current value of \somecs}

This mechanism is the basis for cross-referencing macros in several macro packages.

12.6.4 Controlled expansion inside an \edef

Sometimes you may need an \edef to evaluate current conditions, but you want to expand
something in the replacement text only to a certain level. Suppose that
\def\a{\b} \def\b{c} \def\d{\e} \def\e{f}

is given, and you want to define \g as \a expanded one step, followed by \d fully expanded.
The following works:

Victor Eijkhout – TEX by Topic 135

Chapter 12. Expansion

\edef\g{\expandafter\noexpand\a \d}

Explanation: the \expandafter reaches over the \noexpand to expand \a one step, after
which the sequence \noexpand\b is left.

This trick comes in handy when you need to construct a control sequence with \csname
inside an \edef. The following sequence inside an \edef

\expandafter\noexpand\csname name\endcsname

will expand exactly to \name, but not further. As an example, suppose
\def\condition{true}

has been given, then
\edef\setmycondition{\expandafter\noexpand

\csname mytest\condition\endcsname}

will let \setmycondition expand to \mytesttrue.

12.6.5 Multiple prevention of expansion

As was pointed out above, prefixing a command with \noexpand prevents its expansion
in commands such as \edef and \write. However, if a sequence of tokens passes through
more than one expanding command stronger measures are needed.

The following trick can be used: in order to protect a command against expansion it can be
prefixed with \protect. During the stages of processing where expansion is not desired
the definition of \protect is
\def\protect{\noexpand\protect\noexpand}

Later on, when the command is actually needed, \protect is defined as
\def\protect{}

Why does this work? The expansion of
\protect\somecs

is at first
\noexpand\protect\noexpand\somecs

Inside an \edef this sequence is expanded further, and the subsequent expansion is
\protect\somecs

That is, the expansion is equal to the original sequence.

12.6.6 More examples with \relax

Above, a first example was given in which \relax served to prevent TEX from scanning
too far. Here are some more examples, using \relax to bound numbers.

After
\countdef\pageno=0 \pageno=1
\def\Par{\par\penalty200}

the sequence

136 Victor Eijkhout – TEX by Topic

12.6. Examples

\Par\number\pageno

is misunderstood as
\par\penalty2001

In this case it is sufficient to define
\def\Par{\par\penalty200 }

as an 〈optional space〉 is allowed to follow a number.

Sometimes, however, such a simple escape is not possible. Consider the definition
\def\ifequal#1#2{\ifnum#1=#2 1\else 0\fi}

The question is whether the space after #2 is necessary, superfluous, or simply wrong. Calls
such as \ifequal{27}{28} that compare two numbers (denotations) will correctly give 1
or 0, and the space is necessary to prevent misinterpretation.

However, \ifequal\somecounter\othercounter will give 1 if the counters are equal;
in this case the space could have been dispensed with. The solution that works in both cases
is
\def\ifequal#1#2{\ifnum#1=#2\relax 1\else 0\fi}

Note that \relax is not expanded, so
\edef\foo{1\ifequal\counta\countb}

will define \foo as either 1\relax1 or 10.

12.6.7 Example: category code saving and restoring

In many applications it is necessary to change the category code of a certain character
during the execution of some piece of code. If the writer of that code is also the writer of
the surrounding code, s/he can simply change the category code back and forth. However,
if the surrounding code is by another author, the value of the category code will have to be
stored and restored.

Thus one would like to write
\storecat@
... some code ...
\restorecat@

or maybe
\storecat\%

for characters that are possibly a comment character (or ignored or invalid). The basic idea
is to define
\def\storecat#1{%

\expandafter\edef\csname restorecat#1\endcsname
{\catcode‘#1=\the\catcode‘#1}}

so that, for instance, \storecat$ will define the single control sequence ‘\restorecat$’
(one control sequence) as
\catcode‘$=3

Victor Eijkhout – TEX by Topic 137

Chapter 12. Expansion

The macro \restorecat can then be implemented as

\def\restorecat#1{%
\csname restorecat#1\endcsname}

Unfortunately, things are not so simple.

The problems occur with active characters, because these are expanded inside the \csname ... \endcsname
pairs. One might be tempted to write \noexpand#1 everywhere, but this is wrong. As was
explained above, this is essentially equal to \relax, which is unexpandable, and will the-
refore lead to an error message when it appears between \csname and \endcsname. The
proper solution is then to use \string#1. For the case where the argument was given as a
control symbol (for example \%), the escape character has to be switched off for a while.

Here are the complete macros. The \storecat macro gives its argument a default category
code of 12.

\newcount\tempcounta % just a temporary
\def\csarg#1#2{\expandafter#1\csname#2\endcsname}
\def\storecat#1%

{\tempcounta\escapechar \escapechar=-1
\csarg\edef{restorecat\string#1}%

{\catcode‘\string#1=
\the\catcode\expandafter‘\string#1}%

\catcode\expandafter‘\string#1=12\relax
\escapechar\tempcounta}

\def\restorecat#1%
{\tempcounta\escapechar \escapechar=-1
\csname restorecat\string#1\endcsname
\escapechar\tempcounta}

12.6.8 Combining \aftergroup and boxes

At times, one wants to construct a box and immediately after it has been constructed to
do something with it. The \aftergroup command can be used to put both the commands
creating the box, and the ones handling it, in one macro.

As an example, here is a macro \textvcenter which defines a variant of the \vcenter
box (see page 205) that can be used outside math mode.

\def\textvcenter
{\hbox \bgroup$\everyvbox{\everyvbox{}%
\aftergroup$\aftergroup\egroup}\vcenter}

The idea is that the macro inserts \hbox {$, and that the matching $} gets inserted by the
\aftergroup commands. In order to get the \aftergroup commands inside the box, an
\everyvbox command is used.

This macro can even be used with a 〈box specification〉 (see page 58), for example

\textvcenter spread 8pt{\hbox{a}\vfil\hbox{b}}

and because it is really just an \hbox, it can also be used in a \setbox assignment.

138 Victor Eijkhout – TEX by Topic

12.6. Examples

12.6.9 More expansion

There is a particular charm to macros that work purely by expansion. See the articles by
[11], [16], and [32].

Victor Eijkhout – TEX by Topic 139

Chapter 13

Conditionals

Conditionals are an indispensible tool for powerful macros. TEX has a large repertoire of
conditionals for querying such things as category codes or processing modes. This chapter
gives an inventory of the various conditionals, and it treats the evaluation of conditionals in
detail.
\if Test equality of character codes.
\ifcat Test equality of category codes.
\ifx Test equality of macro expansion, or equality of character code and category code.
\ifcase Enumerated case statement.
\ifnum Test relations between numbers.
\ifodd Test whether a number is odd.
\ifhmode Test whether the current mode is (possibly restricted) horizontal mode.
\ifvmode Test whether the current mode is (possibly internal) vertical mode.
\ifmmode Test whether the current mode is (possibly display) math mode.
\ifinner Test whether the current mode is an internal mode.
\ifdim Compare two dimensions.
\ifvoid Test whether a box register is empty.
\ifhbox Test whether a box register contains a horizontal box.
\ifvbox Test whether a box register contains a vertical box.
\ifeof Test for end of input stream or non-existence of file.
\iftrue A test that is always true.
\iffalse A test that is always false.
\fi Closing delimiter for all conditionals.
\else Select 〈false text〉 of a conditional or default case of \ifcase.
\or Separator for entries of an \ifcase.
\newif Create a new test.

13.1 The shape of conditionals
Conditionals in TEX have one of the following two forms

\if...〈test tokens〉〈true text〉\fi
\if...〈test tokens〉〈true text〉\else〈false text〉\fi

140

13.2. Character and control sequence tests

where the 〈test tokens〉 are zero or more tokens, depending on the particular conditional;
the 〈true text〉 is a series of tokens to be processed if the test turns out true, and the 〈false
text〉 is a series of tokens to be processed if the test turns out false. Both the 〈true text〉 and
the 〈false text〉 can be empty.

The exact process of how TEX expands conditionals is treated below.

13.2 Character and control sequence tests
Three tests exist for testing character tokens and control sequence tokens.

13.2.1 \if

Equality of character codes can be tested by

\if〈token1〉〈token2〉
In order to allow the tokens to be control sequences, TEX assigns character code 256 to
control sequences, the lowest positive number that is not the character code of a character
token (remember that the legal character codes are 0–255).

Thus all control sequences are equal as far as \if is concerned, and they are unequal to all
character tokens. As an example, this fact can be used to define

\def\ifIsControlSequence#1{\if\noexpand#1\relax}

which tests whether a token is a control sequence token instead of a character token (its
result is unpredictable if the argument is a {...} group).

After \if TEX will expand until two unexpandable tokens are obtained, so it is necessary
to prefix expandable control sequences and active characters with \noexpand when testing
them with \if.

After
\catcode‘\b=13 \catcode‘\c=13 \def b{a} \def c{a} \let\d=a
we find that

\if bc is true, because both b and c expand to a,
\if\noexpand b\noexpand c is false, and
\if b\d is true because b expands to the character a, and \d
is an implicit character token a.

13.2.2 \ifcat

The \if test ignores category codes; these can be tested by

\ifcat〈token1〉〈token2〉
This test is a lot like \if: TEX expands after it until unexpandable tokens remain. For this
test control sequences are considered to have category code 16 (ordinarily, category codes
are in the range 0–15), which makes them all equal to each other, and different from all
character tokens.

Victor Eijkhout – TEX by Topic 141

Chapter 13. Conditionals

13.2.3 \ifx

Equality of tokens is tested in a stronger sense than the above by
\ifx〈token1〉〈token2〉

• Character tokens are equal for \ifx if they have the same character code and
category code.

• Control sequence tokens are equal if they represent the same TEX primitive, or
have been similarly defined by \font, \countdef, or some such. For example,
\let\boxhor=\hbox \ifx\boxhor\hbox %is true
\font\a=cmr10 \font\b=cmr10 \ifx\a\b %is true

• Control sequences are also equal if they are macros with the same parameter text
and replacement text, and the same status with respect to \outer and \long. For
example,
\def\a{z} \def\b{z} \def\c1{z} \def\d{\a}
\ifx\a\b %is true
\ifx\a\c %is false
\ifx\a\d %is false

Tokens following this test are not expanded.

By way of example of the use of \ifx consider string testing. A simple implementation of
string testing in TEX is as follows:
\def\ifEqString#1#2{\def\testa{#1}\def\testb{#2}%

\ifx\testa\testb}

The two strings are used as the replacement text of two macros, and equality of these
macros is tested. This is about as efficient as string testing can get: TEX will traverse the
definition texts of the macros \testa and \testb, which has precisely the right effect.

As another example, one can test whether a control sequence is defined by
\def\ifUnDefinedCs#1{\expandafter

\ifx\csname#1\endcsname\relax}
\ifUnDefinedCs{parindent} %is not true
\ifUnDefinedCs{undefined} %is (one hopes) true

This uses the fact that a \csname...\endcsname command is equivalent to \relax if the
control sequence has not been defined before. Unfortunately, this test also turns out true if
a control sequence has been \let to \relax.

13.3 Mode tests
In order to determine in which of the six modes (see Chapter 6) TEX is currently operating,
the tests \ifhmode, \ifvmode, \ifmmode, and \ifinner are available.
• \ifhmode is true if TEX is in horizontal mode or restricted horizontal mode.
• \ifvmode is true if TEX is in vertical mode or internal vertical mode.
• \ifmmode is true if TEX is in math mode or display math mode.
The \ifinner test is true if TEX is in any of the three internal modes: restricted horizontal
mode, internal vertical mode, and non-display math mode.

142 Victor Eijkhout – TEX by Topic

13.4. Numerical tests

13.4 Numerical tests
Numerical relations between 〈number〉s can be tested with

\ifnum〈number1〉〈relation〉〈number2〉
where the relation is a character <, =, or >, of category 12.

Quantities such as glue can be used as a number here through the conversion to scaled
points, and TEX will expand in order to arrive at the two 〈number〉s.

Testing for odd or even numbers can be done with \ifodd: the test

\ifodd〈number〉
is true if the 〈number〉 is odd.

13.5 Other tests
13.5.1 Dimension testing

Relations between 〈dimen〉 values (Chapter 8) can be tested with \ifdim using the same
three relations as in \ifnum.

13.5.2 Box tests

Contents of box registers (Chapter 5) can be tested with

\ifvoid〈8-bit number〉
which is true if the register contains no box,

\ifhbox〈8-bit number〉
which is true if the register contains a horizontal box, and

\ifvbox〈8-bit number〉
which is true if the register contains a vertical box.

13.5.3 I/O tests

The status of input streams (Chapter 30) can be tested with the end-of-file test \ifeof〈number〉,
which is only false if the number is in the range 0–15, and the corresponding stream is open
and not fully read. In particular, this test is true if the file name connected to this stream
(through \openin) does not correspond to an existing file. See the example on page 248.

13.5.4 Case statement

The TEX case statement is called \ifcase; its syntax is

\ifcase〈number〉〈case0〉\or...\or〈casen〉\else〈other cases〉\fi
where for n cases there are n − 1 \or control sequences. Each of the 〈casei〉 parts can be
empty, and the \else〈other cases〉 part is optional.

Victor Eijkhout – TEX by Topic 143

Chapter 13. Conditionals

13.5.5 Special tests

The tests \iftrue and \iffalse are always true and false respectively. They are mainly
useful as tools in macros.

For instance, the sequences
\iftrue{\else}\fi

and
\iffalse{\else}\fi

yield a left and right brace respectively, but they have balanced braces, so they can be used
inside a macro replacement text.

The \newif macro, treated below, provides another use of \iftrue and \iffalse. On
page 260 of the TEX book these control sequences are also used in an interesting manner.

13.6 The \newif macro
The plain format defines an (outer) macro \newif by which the user can define new con-
ditionals. If the user defines
\newif\iffoo

TEX defines three new control sequences, \footrue and \foofalse with which the user
can set the condition, and \iffoo which tests the ‘foo’ condition.

The macro call \newif\iffoo expands to
\def\footrue{\let\iffoo=\iftrue} \def\foofalse{\let\iffoo=\iffalse}
\foofalse

The actual definition, especially the part that ensures that the \iffoo indeed starts with
\if, is a pretty hack. An explanation follows here. This uses concepts from Chapters 11
and 12.

The macro \newif starts as follows:
\outer\def\newif#1{\count@\escapechar \escapechar\m@ne

This saves the current escape character in \count@, and sets the value of \escapechar
to -1. The latter action has the effect that no escape character is used in the output of
\string〈control sequence〉.

An auxiliary macro \if@ is defined by
{\uccode‘1=‘i \uccode‘2=‘f \uppercase{\gdef\if@12{}}}

Since the uppercase command changes only character codes, and not category codes, the
macro \if@ now has to be followed by the characters if of category 12. Ordinarily, these
characters have category code 11. In effect this macro then eats these two characters, and
TEX complains if they are not present.

Next there is a macro \@if defined by
\def\@if#1#2{\csname\expandafter\if@\string#1#2\endcsname}

144 Victor Eijkhout – TEX by Topic

13.7. Evaluation of conditionals

which will be called like \@if\iffoo{true} and \@if\iffoo{false}.

Let us examine the call \@if\iffoo{true}.

• The \expandafter reaches over the \if@ to expand \string first. The part
\string\iffoo expands to iffoo because the escape character is not printed,
and all characters have category 12.

• The \if@ eats the first two characters i12f12 of this.
• As a result, the final expansion of \@if\iffoo{true} is then

\csname footrue\endcsname

Now we can treat the relevant parts of \newif itself:

\expandafter\expandafter\expandafter
\edef\@if#1{true}{\let\noexpand#1=\noexpand\iftrue}%

The three \expandafter commands may look intimidating, so let us take one step at a
time.

• One \expandafter is necessary to reach over the \edef, such that \@if will
expand:
\expandafter\edef\@if\iffoo{true}
gives
\edef\csname footrue\endcsname

• Then another \expandafter is necessary to activate the \csname:
\expandafter \expandafter \expandafter \edef \@if ...
% new old new

• This makes the final expansion
\edef\footrue{\let\noexpand\iffoo=\noexpand\iftrue}

After this follows a similar statement for the false case:

\expandafter\expandafter\expandafter
\edef\@if#1{false}{\let\noexpand#1=\noexpand\iffalse}%

The conditional starts out false, and the escape character has to be reset:

\@if#1{false}\escapechar\count@}

13.7 Evaluation of conditionals
TEX’s conditionals behave differently from those in ordinary programming languages. In
many instances one may not notice the difference, but in certain contexts it is important to
know precisely what happens.

When TEX evaluates a conditional, it first determines what is to be tested. This in itself may
involve some expansion; as we saw in the previous chapter, only after an \ifx test does
TEX not expand. After all other tests TEX will expand tokens until the extent of the test and
the tokens to be tested have been determined. On the basis of the outcome of this test the
〈true text〉 and the 〈false text〉 are either expanded or skipped.

For the processing of the parts of the conditional let us consider some cases separately.

Victor Eijkhout – TEX by Topic 145

Chapter 13. Conditionals

• \if... ... \fi and the result of the test is false. After the test TEX will start
skipping material without expansion, without counting braces, but balancing ne-
sted conditionals, until a \fi token is encountered. If the \fi is not found an error
message results at the end of the file:

Incomplete \if...; all text was ignored after line ...
where the line number indicated is that of the line where TEX started skipping, that
is, where the conditional occurred.

• \if... \else ... \fi and the result of the test is false. Any material in bet-
ween the condition and the \else is skipped without expansion, without counting
braces, but balancing nested conditionals.
The \fi token can be the result of expansion; if it never turns up TEX will give a
diagnostic message

\end occurred when \if... on line ... was incomplete
This sort of error is not visible in the output.
This point plus the previous may jointly be described as follows: after a false con-
dition TEX skips until an \else or \fi is found; any material in between \else
and \fi is processed.

• \if... ... \fi and the result of the test is true. TEX will start processing the
material following the condition. As above, the \fi token may be inserted by
expansion of a macro.

• \if... \else ... \fi and the result of the test is true. Any material following
the condition is processed until the \else is found; then TEX skips everything
until the matching \fi is found.
This point plus the previous may be described as follows: after a true test TEX
starts processing material until an \else or \fi is found; if an \else is found
TEX skips until it finds the matching \fi.

13.8 Assorted remarks
13.8.1 The test gobbles up tokens

A common mistake is to write the following:
\ifnum\x>0\someaction \else\anotheraction \fi

which has the effect that the \someaction is expanded, regardless of whether the test
succeeds or not. The reason for this is that TEX evaluates the input stream until it is certain
that it has found the arguments to be tested. In this case it is perfectly possible for the
\someaction to yield a digit, so it is expanded. The remedy is to insert a space or a
\relax control sequence after the last digit of the number to be tested.

13.8.2 The test wants to gobble up the \else or \fi

The same mechanism that underlies the phenomenon in the previous point can lead to
even more surprising effects if TEX bumps into an \else, \or, or \fi while still busy
determining the extent of the test itself.

Recall that \pageno is a synomym for \count0, and consider the following examples:

146 Victor Eijkhout – TEX by Topic

13.8. Assorted remarks

\newcount\nct \nct=1\ifodd\pageno\else 2\fi 1

and
\newcount\nct \nct=1\ifodd\count0\else 2\fi 1

The first example will assign either 11 or 121 to \nct, but the second one will assign 1
or 121. The explanation is that in cases like the second, where an \else is encountered
while the test still has not been delimited, a \relax is inserted. In the case that \count0
is odd the result will thus be \relax, and the example will yield
\nct=1\relax2

which will assign 1 to \nct, and print 2.

13.8.3 Macros and conditionals; the use of \expandafter

Consider the following example:
\def\bold#1{{\bf #1}} \def\slant#1{{\sl #1}}
\ifnum1>0 \bold \else \slant \fi {some text} ...

This will make not only ‘some text’, but all subsequent text bold. Also, at the end of
the job there will be a notice that ‘end occurred inside a group at level 1’. Switching on
\tracingmacros reveals that the argument of \bold was \else. This means that, after
expansion of \bold, the input stream looked like
\ifnum1>0 {\bf \else }\fi {some text} rest of the text

so the closing brace was skipped as part of the 〈false text〉. Effectively, then, the resulting
stream is
{\bf {some text} rest of the text

which is unbalanced.

One solution to this sort of problem would be to write
\ifnum1>0 \let\next=\bold \else \let\next=\slant \fi \next

but a solution using \expandafter is also possible:
\ifnum1>0 \expandafter \bold \else \expandafter \slant \fi

This works, because the \expandafter commands let TEX determine the boundaries of
the 〈true text〉 and the 〈false text〉.

In fact, the second solution may be preferred over the first, since conditionals are handled
by the expansion processor, and the \let statements are tackled only by the execution
processor; that is, they are not expandable. Thus the second solution will (and the first will
not) work, for instance, inside an \edef.

Another example with \expandafter is the sequence
\def\get#1\get{ ... }
\expandafter \get \ifodd1 \ifodd3 5\fi \fi \get

This gives
#1<- \ifodd3 5\fi \fi

and

Victor Eijkhout – TEX by Topic 147

Chapter 13. Conditionals

\expandafter \get \ifodd2 \ifodd3 5\fi\fi \get

gives
#1<-

This illustrates again that the result of evaluating a conditional is not the final expansion,
but the start of the expansion of the 〈true text〉 or 〈false text〉, depending on the outcome of
the test.

A detail should be noted: with \expandafter it is possible that the \else is encountered
before the 〈true text〉 has been expanded completely. This raises the question as to the exact
timing of expansion and skipping. In the example
\def\hello{\message{Hello!}}
\ifnum1>0 \expandafter \hello \else \message{goodbye} \bye

the error message caused by the missing \fi is given without \hello ever having been
expanded. The conclusion must be that the 〈false text〉 is skipped as soon as it has been
located, even if this is at a time when the 〈true text〉 has not been expanded completely.

13.8.4 Incorrect matching

TEX’s matching of \if, \else, and \fi is easily upset. For instance, the TEX book warns
you that you should not say
\let\ifabc=\iftrue

inside a conditional, because if this text is skipped TEX sees at least one \if to be matched.

The reason for this is that when TEX is skipping it recognizes all \if..., \or, \else, and
\fi tokens, and everything that has been declared a synonym of such a token by \let.
In \let\ifabc=\iftrue TEX will therefore at least see the \iftrue as the opening of a
conditional, and, if the current meaning of \ifabc was for instance \iffalse, it will also
be considered as the opening of a conditional statement.

As another example, if
\csname if\sometest\endcsname \someaction \fi

is skipped as part of conditional text, the \fi will unintentionally close the outer conditio-
nal.

It does not help to enclose such potentially dangerous constructs inside a group, because
grouping is independent of conditional structure. Burying such commands inside macros
is the safest approach.

Sometimes another solution is possible, however. The \loop macro of plain TEX (see
page 118) is used as
\loop ... \if ... \repeat

where the \repeat is not an actually executable command, but is merely a delimiter:
\def\loop#1\repeat{ ... }

Therefore, by declaring
\let\repeat\fi

the \repeat balances the \if... that terminates the loop, and it becomes possible to have
loops in skipped conditional text.

148 Victor Eijkhout – TEX by Topic

13.8. Assorted remarks

13.8.5 Conditionals and grouping

It has already been mentioned above that group nesting in TEX is independent of conditional
nesting. The reason for this is that conditionals are handled by the expansion part of TEX; in
that stage braces are just unexpandable tokens that require no special treatment. Grouping
is only performed in the later stage of execution processing.

An example of this independence is now given. One may write a macro that yields part of
a conditional:

\def\elsepart{\else \dosomething \fi}

The other way around, the following macros yield a left brace and a right brace respectively:

\def\leftbrace{\iftrue{\else}\fi}
\def\rightbrace{\iffalse{\else}\fi}

Note that braces in these definitions are properly nested.

13.8.6 A trick

In some contexts it may be hard to get rid of \else or \fi tokens in a proper manner.
The above approach with \expandafter works only if there is a limited number of tokens
involved. In other cases the following trick may provide a way out:

\def\hop#1\fi{\fi #1}

Using this as

\if... \hop 〈lots of tokens〉\fi
will place the tokens outside the conditional. This is for instance used in [11].

As a further example of this sort of trick, consider the problem (suggested to me and sol-
ved by Alan Jeffrey) of implementing a conditional \ifLessThan#1#2#3#4 such that the
arguments corresponding to #3 or #4 result, depending on whether #1 is less than #2 or
not.

The problem here is how to get rid of the \else and the \fi. The – or at least, one –
solution is to scoop them up as delimiters for macros:

\def\ifLessThan#1#2{\ifnum#1<#2\relax\taketrue \else \takefalse \fi}
\def\takefalse\fi#1#2{\fi#2}
\def\taketrue\else\takefalse\fi#1#2{\fi#1}

Note that \ifLessThan has only two parameters (the things to be tested); however, its
result is a macro that chooses between the next two arguments.

13.8.7 More examples of expansion in conditionals

Above, the macro \ifEqString was given that compares two strings:

\def\ifEqString#1#2%
{\def\csa{#1}\def\csb{#2}\ifx\csa\csb }

Victor Eijkhout – TEX by Topic 149

Chapter 13. Conditionals

However, this macro relies on \def, which is not an expandable command. If we need a
string tester that will work, for instance, inside an \edef, we need some more ingenuity
(this solution was taken from [11]). The basic principle of this solution is to compare the
strings one character at a time. Macro delimiting by \fi is used; this was explained above.

First of all, the \ifEqString call is replaced by a sequence \ifAllChars ...\Are ...\TheSame,
and both strings are delimited by a dollar sign, which is not supposed to appear in the strings
themselves.
\def\ifEqString

#1#2{\ifAllChars#1$\Are#2$\TheSame}

The test for equality of characters first determines whether either string has ended. If both
have ended, the original strings were equal; if only one has ended, they were of unequal
length, hence unequal. If neither string has ended, we test whether the first characters are
equal, and if so, we make a recursive call to test the remainder of the string.
\def\ifAllChars#1#2\Are#3#4\TheSame

{\if#1$\if#3$\say{true}%
\else \say{false}\fi

\else \if#1#3\ifRest#2\TheSame#4\else
\say{false}\fi\fi}

\def\ifRest#1\TheSame#2\else#3\fi\fi
{\fi\fi \ifAllChars#1\Are#2\TheSame}

The \saymacro is supposed to give \iftrue for \say{true} and \iffalse for \say{false}.
Observing that all calls to this macro occur two conditionals deep, we use the ‘hop’ trick
explained above as follows.
\def\say#1#2\fi\fi

{\fi\fi\csname if#1\endcsname}

Similar to the above example, let us write a macro that will test lexicographic (‘dictionary’)
precedence of two strings:
\let\ex=\expandafter
\def\ifbefore

#1#2{\ifallchars#1$\are#2$\before}
\def\ifallchars#1#2\are#3#4\before

{\if#1$\say{true\ex}\else
\if#3$\say{false\ex\ex\ex}\else
\ifnum‘#1>‘#3 \say{false%

\ex\ex\ex\ex\ex\ex\ex}\else
\ifnum‘#1<‘#3 \say{true%
\ex\ex\ex\ex\ex\ex\ex
\ex\ex\ex\ex\ex\ex\ex\ex}\else

\ifrest#2\before#4\fi\fi\fi\fi}
\def\ifrest#1\before#2\fi\fi\fi\fi

{\fi\fi\fi\fi
\ifallchars#1\are#2\before}

\def\say#1{\csname if#1\endcsname}

In this macro a slightly different implementation of \say is used.

150 Victor Eijkhout – TEX by Topic

13.8. Assorted remarks

Simplified, a call to \ifbefore will eventually lead to a situation that looks (in the ‘true’
case) like
\ifbefore{...}{...}

\if... %% some comparison that turns out true
\csname iftrue\expandafter\endcsname

\else \fi
... %% commands for the ‘before’ case

\else
... %% commands for the ‘not-before’ case

\fi

When the comparison has turned out true, TEX will start processing the 〈true text〉, and
make a mental note to remove any \else ... \fi part once an \else token is seen.
Thus, the sequence
\csname iftrue\expandafter\endcsname \else ... \fi

is replaced by
\csname iftrue\endcsname

as the \else is seen while TEX is still processing \csname...\endcsname.

Calls to \say occur inside nested conditionals, so the number of \expandafter com-
mands necessary may be larger than 1: for level two it is 3, for level three it is 7, and for
level 4 it is 15. Slightly more compact implementations of this macro do exist.

Victor Eijkhout – TEX by Topic 151

Chapter 14

Token Lists

TEX has only one type of data structure: the token list. There are token list registers that
are available to the user, and TEX has some special token lists: the \every... variables,
\errhelp, and \output.
\toks Prefix for a token list register.
\toksdef Define a control sequence to be a synonym for a \toks register.
\newtoks Macro that allocates a token list register.

14.1 Token lists
Token lists are the only type of data structure that TEX knows. They can contain charac-
ter tokens and control sequence tokens. Spaces in a token list are significant. The only
operations on token lists are assignment and unpacking.

TEX has 256 token list registers \toksnnn that can be allocated using the macro \newtoks,
or explicitly assigned by \toksdef; see below.

14.2 Use of token lists
Token lists are assigned by a 〈variable assignment〉, which is in this case takes one of the
forms

〈token variable〉〈equals〉〈general text〉
〈token variable〉〈equals〉〈filler〉〈token variable〉

Here a 〈token variable〉 is an explicit \toksnnn register, something that has been defined
to such a register by \toksdef (probably hidden in \newtoks), or one of the special 〈token
parameter〉 lists below. A 〈general text〉 has an explicit closing brace, but the open brace
can be implicit.

Examples of token lists are (the first two lines are equivalent):
\toks0=\bgroup \a \b cd}
\toks0={\a \b cd}
\toks1=\toks2

152

14.3. 〈token parameter〉

Unpacking a token list is done by the command \the: the expansion of \the〈token variable〉
is the sequence of tokens that was in the token list.

Token lists have a special behaviour in \edef: when prefixed by \the they are unpacked,
but the resulting tokens are not evaluated further. Thus
\toks0={\a \b} \edef\SomeCs{\the\toks0}

gives
\SomeCs: macro:-> \a \b

This is in contrast to what happens ordinarily in an \edef; see page 127.

14.3 〈token parameter〉
There are in TEX a number of token lists that are automatically inserted at certain points.
These 〈token parameter〉s are the following:

\output this token list is inserted whenever TEX decides it has sufficient material for a
page, or when the user forces activation by a penalty ≤ −10 000 in vertical mode
(see Chapter 28);

\everypar is inserted when TEX switches from external or internal vertical mode to un-
restricted horizontal mode (see Chapter 16);

\everymath is inserted after a single math-shift character that starts a formula;
\everydisplay is inserted after a double math-shift character that starts a display for-

mula;
\everyhbox is inserted when an \hbox begins (see Chapter 5);
\everyvbox is inserted when a vertical box begins (see Chapter 5);
\everyjob is inserted when a job begins (see Chapter 32);
\everycr is inserted in alignments after \cr or a non-redundant \crcr (see Chapter 25);
\errhelp contains tokens to supplement an \errmessage (see Chapter 35).

A 〈token parameter〉 behaves the same as an explicit \toksnnn list, or a quantity defined
by \toksdef.

14.4 Token list registers
Token lists can be stored in \toks registers:

\toks〈8-bit number〉
which is a 〈token variable〉. Synonyms for token list registers can be made by the 〈registerdef〉
command \toksdef in a 〈shorthand definition〉:

\toksdef〈control sequence〉〈equals〉〈8-bit number〉
A control sequence defined this way is called a 〈toksdef token〉, and this is also a token
variable (the remaining third kind of token variable is the 〈token parameter〉).

The plain TEX macro \newtoks uses \toksdef to allocate unused token list registers. This
macro is \outer.

Victor Eijkhout – TEX by Topic 153

Chapter 14. Token Lists

14.5 Examples
Token lists are probably among the least obvious components of TEX: most TEX users will
never find occasion for their use, but format designers and other macro writers can find
interesting applications. Following are some examples of the sorts of things that can be
done with token lists.

14.5.1 Operations on token lists: stack macros

The number of primitive operations available for token lists is rather limited: assignment
and unpacking. However, these are sufficient to implement other operations such as appen-
ding.

Let us say we have allocated a token register
\newtoks\list \list={\c}

and we want to add tokens to it, using the syntax
\Prepend \a \b (to:)\list

such that
\showthe\list

gives
> \a \b \c .

For this the original list has to be unpacked, and the new tokens followed by the old contents
have to assigned again to the register. Unpacking can be done with \the inside an \edef,
so we arrive at the following macro:
\def\Prepend#1(to:)#2{\toks0={#1}%

\edef\act{\noexpand#2={\the\toks0 \the#2}}%
\act}

Note that the tokens that are to be added are first packed into a temporary token list, which
is then again unpacked inside the \edef. Including them directly would have led to their
expansion.

Next we want to use token lists as a sort of stack: we want a ‘pop’ operation that removes
the first element from the list. Specifically,
\Pop\list(into:)\first
\show\first \showthe\list

should give
> \first=macro:
->\a .

and for the remaining list

> \b \c .

Here we make creative use of delimited and undelimited parameters. With an \edef we
unpack the list, and the auxiliary macro \SplitOff scoops up the elements as one undeli-
mited argument, the first element, and one delimited argument, the rest of the elements.

154 Victor Eijkhout – TEX by Topic

14.5. Examples

\def\Pop#1(into:)#2{%
\edef\act{\noexpand\SplitOff\the#1%

(head:)\noexpand#2(tail:)\noexpand#1}%
\act}

\def\SplitOff#1#2(head:)#3(tail:)#4{\def#3{#1}#4={#2}}

14.5.2 Executing token lists

The \the operation for unpacking token lists was used above only inside an \edef. Used
on its own it has the effect of feeding the tokens of the list to TEX’s expansion mechanism. If
the tokens have been added to the list in a uniform syntax, this gives rise to some interesting
possibilities.

Imagine that we are implementing the bookkeeping of external files for a format. Such
external files can be used for table of contents, list of figures, et cetera. If the presence of
such objects is under the control of the user, we need some general routines for opening
and closing files, and keeping track of what files we have opened at the user’s request.

Here only some routines for bookkeeping will be described. Let us say there is a list of
auxiliary files, and an auxiliary counter:

\newtoks\auxlist \newcount\auxcount

First of all there must be an operation to add auxiliary files:

\def\NewAuxFile#1{\AddToAuxList{#1}%
% plus other actions
}

\def\AddToAuxList#1{\let\\=\relax
\edef\act{\noexpand\auxlist={\the\auxlist \\{#1}}}%
\act}

This adds the name to the list in a uniform format:

\NewAuxFile{toc} \NewAuxFile{lof}
\showthe\auxlist
> \\{toc}\\{lof}.

using the control sequence \\ which is left undefined.

Now this control sequence can be used for instance to count the number of elements in the
list:

\def\ComputeLengthOfAuxList{\auxcount=0
\def\\##1{\advance\auxcount1\relax}%
\the\auxlist}

\ComputeLengthOfAuxList \showthe\auxcount
> 2.

Another use of this structure is the following: at the end of the job we can now close all
auxiliary files at once, by

\def\CloseAuxFiles{\def\\##1{\CloseAuxFile{##1}}%
\the\auxlist}

Victor Eijkhout – TEX by Topic 155

Chapter 14. Token Lists

\def\CloseAuxFile#1{\message{closing file: #1. }%
% plus other actions
}

\CloseAuxFiles

which gives the output
closing file: toc. closing file: lof.

156 Victor Eijkhout – TEX by Topic

Chapter 15

Baseline Distances

Lines of text are in most cases not of equal height or depth. Therefore TEX adds inter-
line glue to keep baselines at a uniform distance from one another. This chapter treats the
computation of such interline glue.
\baselineskip The ‘ideal’ baseline distance between neighbouring boxes on a vertical

list. Plain TEX default: 12pt.
\lineskiplimit Distance to be maintained between the bottom and top of neighbouring

boxes on a vertical list. Plain TEX default: 0pt.
\lineskip Glue added if the distance between bottom and top of neighbouring boxes is

less than \lineskiplimit. Plain TEX default: 1pt.
\prevdepth Depth of the last box added to a vertical list as it is perceived by TEX.
\nointerlineskip Macro to prevent interline glue insertion once.
\offinterlineskip Macro to prevent interline glue globally henceforth.
\openup Increase \baselineskip, \lineskip, and \lineskiplimit by specified amount.

15.1 Interline glue
TEX tries to keep a certain distance between the reference points of boxes that are added
to a vertical list; in particular it tries to keep the baselines of ordinary text at a constant
distance, the \baselineskip. Actually, the \baselineskip is a 〈glue〉, so line distances
can stretch or shrink. However, the natural sizes, as well as the stretch and the shrink, are
the same between all lines.

When boxes, whether they are lines of a paragraph or explicit boxes, are appended to a
vertical list, glue is added usually so that the depth of the preceding box and the height of
the current one add up to the \baselineskip. This has the effect of keeping the reference
points of subsequent lines at regular intervals.

157

Chapter 15. Baseline Distances

However, this process can bring the bottom and top of two subsequent boxes to be less than
\lineskiplimit apart:

In that case, \lineskip glue is added: Note that this will usually increase the distance
between the baselines of the boxes to more than the \baselineskip.

The exact process is this:
• if \prevdepth is -1000pt or less, no glue is added, otherwise
• TEX calculates the distance between the bottom of the previous box and the top of

the current one as the natural width of the \baselineskip minus \prevdepth
(the depth of the last box) and minus the height of the current box;

• if this distance is at least \lineskiplimit, glue is added with the calculated
distance as natural size, and with the stretch and shrink of the \baselineskip,

• otherwise \lineskip glue is added.
• \prevdepth is set to the depth of the current item.
There are two exceptional situations: no interline glue is added before and after a rule,
and the \prevdepth is not updated by an \unvbox or \unvcopy command. After a rule
interline glue is prevented by a value of -1000pt of the \prevdepth.

The above process is carried out, irrespective of what extra glue may have been inserted
in between the boxes. Thus a skip in between boxes in vertical mode will not affect the
distance calculated from the baseline distances, and therefore also not the amount of base-
lineskip glue. The same holds for glue added with \vadjust inside a paragraph.

\baselineskip=10pt \lineskiplimit=2pt \lineskip=2pt
\setbox0=\vbox{\hbox{\vrule depth4pt}

\hbox{\vrule height 3pt}}
\showbox0
gives
\box0=
\vbox(10.0+0.0)x0.4
.\hbox(0.0+4.0)x0.4
..\rule(*+4.0)x0.4
.\glue(\baselineskip) 3.0
.\hbox(3.0+0.0)x0.4
..\rule(3.0+*)x0
Bringing the boxes to within \lineskiplimit of each other, that is
\setbox0\vbox{\hbox{\vrule depth4pt}

\hbox{\vrule height 5pt}}
\showbox0
gives
\box0=
\vbox(11.0+0.0)x0.4
.\hbox(0.0+4.0)x0.4
..\rule(*+4.0)x0.4
.\glue(\lineskip) 2.0
.\hbox(5.0+0.0)x0.4
..\rule(5.0+*)x0.4

158 Victor Eijkhout – TEX by Topic

15.2. The perceived depth of boxes

where \lineskip glue has been inserted instead of the usual \baselineskip
glue.

The plain TEX default values are
\lineskiplimit=0pt lineskip=1pt

so, when boxes start to touch each other, they are moved one point apart.

15.2 The perceived depth of boxes
The decision process for interline glue uses \prevdepth as the perceived depth of the
preceding box on the vertical list. The \prevdepth parameter can be used only in vertical
mode.

The \prevdepth is set to the depth of boxes added to the vertical list, but it is not affected
by \unvbox or \unvcopy. After an \hrule it is set to -1000pt to prevent interline glue
before the next box.

At the beginning of a vertical list \prevdepth is set to -1000pt, except in an \halign
and \noalign code contained therein, where it is carried over from the surrounding list. At
the end of the alignment the value of \prevdepth set by the last alignment row is carried
to the outer list.

In order to prevent interline glue just once, all that is needed is to alter the \prevdepth.
\def\nointerlineskip{\prevdepth=-1000pt}

The \offinterlineskip macro is much more drastic: it prevents all interline glue from
the moment of its call onwards, or, if it is used inside a paragraph, from the start of that
paragraph. Its definition is
\baselineskip=-1000pt \lineskip=0pt
\lineskiplimit\maxdimen

where the second line is the essential one: it causes TEX to add \lineskip glue (which is
zero) always. Settings for \baselineskip do not matter any more then.

The \offinterlineskip macro has an important application in alignments (see Chap-
ter 25).

By setting
\lineskiplimit=-\maxdimen

you can force TEX to apply the \baselineskip always, regardless of whether this would
bring boxes too close together or, indeed, if this would make them overlap.

15.3 Terminology
In hot metal typesetting, all letters of a particular font were on a ‘body’ of the same size.
Thus every line of type had the same height and depth, and the resulting distance between
the baselines would be some suitable value for that type. If for some reason this distance

Victor Eijkhout – TEX by Topic 159

Chapter 15. Baseline Distances

should be larger (see [52] for a discussion of this), strips of lead would be inserted. The
extra distance was called the ‘leading’ (pronounced ‘ledding’).

With phototypesetting, when the baseline distance was sometimes called the ‘film trans-
port’, this terminology blurred, and the term ‘leading’ was also used for the baseline di-
stance. Some of this confusion is also present in TEX: the parameter \baselineskip speci-
fies the baseline distance, but in the trace output (see the examples above) the glue inserted
to make the baseline distance equal to \baselineskip is called \baselineskip.

15.4 Additional remarks
In general, for documents longer than one page it is desirable to have the same baseline
distance throughout. However, for one-page documents you may add stretchability to the
baselineskip, for instance if the text has to be flush bottom.

Increasing the distance between just one pair of lines can be done with \vadjust. The
argument of this command is vertical material that will be inserted in the vertical list right
after the line where this command was given. The second line of this paragraph, for in-
stance, contains the command \vadjust{\kern2pt}.

The amount of leading cannot be changed in the middle of a paragraph, because the va-
lue for \baselineskip that is used is the one that is current when the paragraph is fi-
nally broken and added to the main vertical list. The same holds for the \lineskip and
\lineskiplimit.

The plain TEX macro \openup increases the \baselineskip, \lineskip, and \lineskiplimit
by the amount of the argument to the macro. In effect, this increases line distances by this
amount regardless of whether they are governed by \baselineskip or \lineskip.

160 Victor Eijkhout – TEX by Topic

Chapter 16

Paragraph Start

At the start of a paragraph TEX inserts a vertical skip as a separation from the preceding
paragraph, and a horizontal skip as an indentation for the current paragraph. This chapter
explains the exact sequence of actions, and it discusses how TEX’s decisions can be altered.

\indent Switch to horizontal mode and insert a box of width \parindent.
\noindent Switch to horizontal mode with an empty horizontal list.
\parskip Amount of glue added to the surrounding vertical list when a paragraph starts.

Plain TEX default: 0pt plus 1pt.
\parindent Size of the indentation box added in front of a paragraph. Plain TEX default: 20pt.
\everypar Token list inserted in front of paragraph text;
\leavevmode Macro to switch to horizontal mode if necessary.

16.1 When does a paragraph start
TEX starts a paragraph whenever it switches from vertical mode to (unrestricted) horizontal
mode. This switch can be effected by one of the commands \indent and \noindent, for
example

{\bf And now~\dots}
\vskip3pt
\noindent It’s~\dots

or by any 〈horizontal command〉. Horizontal commands include characters, in-line formu-
las, and horizontal skips, but not boxes. Consider the following examples. The character ‘I’
is a horizontal command:

\vskip3pt
It’s~\dots

A single $ is a horizontal command:

x is supposed~\dots

The control sequence \hskip is a horizontal command:

\hskip .5\hsize Long indentation~\dots

161

Chapter 16. Paragraph Start

The full list of horizontal commands is given on page 74.

Upon recognizing a horizontal command in vertical mode, TEX will perform an \indent
command (and all the actions associated with it; see below), and after that it will reexamine
the horizontal command, this time executing it.

16.2 What happens when a paragraph starts
The \indent and \noindent commands cause a paragraph to be started. An \indent
command can either be placed explicitly by the user or a macro, or it can be inserted by
TEX when a 〈horizontal command〉 occurs in vertical mode; a \noindent command can
only be placed explicitly.

After either command is encountered, \parskip glue is appended to the surrounding ver-
tical list unless TEX is in internal vertical mode and that list is empty (for example, at the
start of a \vbox or \vtop). TEX then switches to unrestricted horizontal mode with an
empty horizontal list. In the case of \indent (which may be inserted implicitly) an empty
\hbox of width \parindent is placed at the start of the horizontal list; after \noindent
no indentation box is inserted.

The contents of the \everypar 〈token parameter〉 are then inserted into the input (see
some applications below). After that, the page builder is exercised (see Chapter 27). Note
that this happens in horizontal mode: this is to move the \parskip glue to the current page.

If an \indent command is given while TEX is already in horizontal mode, the indentation
box is inserted just the same. This is not very useful.

16.3 Assorted remarks
16.3.1 Starting a paragraph with a box

An \hbox does not imply horizontal mode, so an attempt to start a paragraph with a box,
for instance
\hbox to 0cm{\hss\bullet\hskip1em}Text

will make the text following the box wind up one line below the box. It is necessary to
switch to horizontal mode explicitly, using for instance \noindent or \leavevmode. The
latter is defined using \unhbox, which is a horizontal command.

16.3.2 Starting a paragraph with a group

If the first 〈horizontal command〉 of a paragraph is enclosed in braces, the \everypar is
evaluated inside the group. This may give unexpected results. Consider this example:
\everypar={\setbox0=\vbox\bgroup\def\par{\egroup}}
{\bf Start} a paragraph ... \par

The 〈horizontal command〉 starting the paragraph is the character ‘S’, so when \everypar
has been inserted the input is essentially

162 Victor Eijkhout – TEX by Topic

16.4. Examples

{\bf \indent\setbox0=\vbox\bgroup
\def\par{\egroup}Start} a paragraph ... \par

which is equivalent to
{\bf \setbox0=\vbox{Start} a paragraph ... \par

The effect of this is rather different from what was intended. Also, TEX will probably end
the job inside a group.

16.4 Examples
16.4.1 Stretchable indentation

Considering that \parindent is a 〈dimen〉, not a 〈glue〉, it is not possible to declare
\parindent=1cm plus 1fil

in order to get a variable indentation at the start of a paragraph. This problem may be solved
by putting
\everypar={\nobreak\hskip 1cm plus 1fil\relax}

The \nobreak serves to prevent (in rare cases) a line break at the stretchable glue.

16.4.2 Suppressing indentation

Inserting {\setbox0=\lastbox} in the horizontal list at the beginning of the paragraph
removes the indentation: indentation consists of a box, which is available through \lastbox.
Assigning it effectively removes it from the list.

However, this command sequence has to be inserted at a moment when TEX has already
switched to horizontal mode, so explicit insertion of these commands in front of the first
〈horizontal command〉 of the paragraph does not work. The moment of insertion of the
\everypar tokens is a better candidate: specifying
\everypar={{\setbox0=\lastbox}}

leads to unindented paragraphs, even if \parindent is not zero.

16.4.3 An indentation scheme

The above idea of letting the indentation box be removed by \everypar can be put to use
in a systematic approach to indentation, where two conditionals
\newif\ifNeedIndent %as a rule
\newif\ifneedindent %special cases

control whether paragraphs should indent as a rule, and whether in special cases indentation
is needed. This section is taken from [8].

We take a fixed \everypar:
\everypar={\ControlledIndentation}

which executes in some cases the macro \RemoveIndentation

Victor Eijkhout – TEX by Topic 163

Chapter 16. Paragraph Start

\def\RemoveIndentation{{\setbox0=\lastbox}}

The implementation of \ControlledIndentation is:

\def\ControlledIndentation
{\ifNeedIndent \ifneedindent

\else \RemoveIndentation\needindenttrue \fi
\else \ifneedindent \needindentfalse

\else \RemoveIndentation
\fi \fi}

In order to regulate indentation for a whole document, the user now once specifies, for
instance,

\NeedIndenttrue

to indicate that, in principle, all paragraphs should indent. Macros such as \section can
then prevent indentation in individual cases:

\def\section#1{ ... \needindentfalse}

16.4.4 A paragraph skip scheme

The use of \everypar to control indentation, as was sketched above, can be extended to
the paragraph skip.

A visible white space between paragraphs can be created by the \parskip parameter, but,
once this parameter has been set to some value, it is difficult to prevent paragraph skip in
certain places elegantly. Usually, white space above and below environments and section
headings should be specifiable independently of the paragraph skip. This section sketches
an approach where \parskip is set to zero directly above and below certain constructs,
while the \everypar is used to restore former values. This section is taken from [9].

First of all, here are two tools. The control sequence \csarg will be used only inside other
macros; a typical call will look like

\csarg\vskip{#1Parskip}

Here is the definition:

\def\csarg#1#2{\expandafter#1\csname#2\endcsname}

Next follows a generalization of \vskip: the macro \vspace will not place its argument
if the previous glue item is larger; otherwise it will eliminate the preceding glue, and place
its argument.

\newskip\tempskipa
\def\vspace#1{\tempskipa=#1\relax

\ifvmode \ifdim\tempskipa<\lastskip
\else \vskip-\lastskip \vskip\tempskipa \fi

\else \vskip\tempskipa \fi}

Now assume that any construct foo with surrounding white space starts and ends with ma-
cro calls \StartEnvironment{foo} and \EndEnvironment{foo} respectively. Further-
more, assume that to this environment there correspond three glue registers: the \fooStartskip

164 Victor Eijkhout – TEX by Topic

16.4. Examples

(glue above the environment), \fooParskip (the paragraph skip inside the environment),
and the \fooEndskip (glue below the environment).

For restoring the value of the paragraph skip a conditional and a glue register are needed:
\newskip\TempParskip \newif\ifParskipNeedsRestoring

The basic sequence for the starting and ending macros for the environments is then
\TempParskip=\parskip\parskip=0cm\relax
\ParskipNeedsRestoringtrue

The implementations can now be given as:
\def\StartEnvironment#1{\csarg\vspace{#1Startskip}

\begingroup % make changes local
\csarg\TempParskip{#1Parskip} \parskip=0cm\relax
\ParskipNeedsRestoringtrue}

\def\EndEnvironment#1{\csarg\vspace{#1Endskip}
\endgroup % restore global values
\ifParskipNeedsRestoring
\else \TempParskip=\parskip \parskip=0cm\relax

\ParskipNeedsRestoringtrue
\fi}

The \EndEnvironment macro needs a little comment: if an environment is used inside
another one, and it occurs before the first paragraph in that environment, the value of the
paragraph skip for the outer environment has already been saved. Therefore no further
actions are required in that case.

Note that both macros start with a vertical skip. This prevents the \begingroup and
\endgroup statements from occurring in a paragraph.

We now come to the main point: if necessary, the \everypar will restore the value of the
paragraph skip.
\everypar={\ControlledIndentation\ControlledParskip}
\def\ControlledParskip

{\ifParskipNeedsRestoring
\parskip=\TempParskip \ParskipNeedsRestoringfalse

\fi}

Victor Eijkhout – TEX by Topic 165

Chapter 17

Paragraph End

TEX’s mechanism for ending a paragraph is ingenious and effective. This chapter explains
the mechanism, the role of \par in it, and it gives a number of practical remarks.
\par Finish off a paragraph and go into vertical mode.
\endgraf Synonym for \par: \let\endgraf=\par
\parfillskip Glue that is placed between the last element of the paragraph and the line

end. Plain TEX default: 0pt plus 1fil.

17.1 The way paragraphs end
A paragraph is terminated by the primitive \par command, which can be explicitly typed
by the user (or inserted by a macro expansion):
... last words.\par
A new paragraph ...

It can be implicitly generated in the input processor of TEX by an empty line (see Chap-
ter 2):
... last words.

A new paragraph ...

The \par can be inserted because a 〈vertical command〉 occurred in unrestricted horizontal
mode:
... last words.\vskip6pt
A new paragraph ...

Also, a paragraph ends if a closing brace is found in horizontal mode inside \vbox, \insert,
or \output.

After the \par command TEX goes into vertical mode and exercises the page builder (see
page 233). If the \par was inserted because a vertical command occurred in horizontal
mode, the vertical command is then examined anew. The \par does not insert any vertical
glue or penalties itself. A \par command also clears the paragraph shape parameters (see
Chapter 18).

166

17.2. Assorted remarks

17.1.1 The \par command and the \par token

It is important to distinguish between the \par token and the primitive \par command that
is the initial meaning of that token. The \par token is inserted when the input processor
sees an empty line, or when the execution processor finds a 〈vertical command〉 in horizon-
tal mode; the \par command is what actually closes off a paragraph. Decoupling the token
and the command is an important tool for special effects in paragraphs (see some examples
in Chapters 5 and 9).

17.1.2 Paragraph filling: \parfillskip

After the last element of the paragraph TEX implicitly inserts the equivalent of
\unskip \penalty10000 \hskip\parfillskip

The \unskip serves to remove any spurious glue at the paragraph end, such as the space
generated by the line end if the \par was inserted by the input processor. For example:
end.

\noindent Begin

results in the tokens
end. \par Begin

With the sequence inserted by the \par this becomes
end. \unskip\penalty10000\hskip ...

which in turn gives
end.\penalty ...

The \parfillskip is in plain TEX first-order infinite (0pt plus 1fil), so ending a pa-
ragraph with \hfil\bullet\par will give a bullet halfway between the last word and
the line end; with \hfill\bullet\par it will be flush right.

17.2 Assorted remarks
17.2.1 Ending a paragraph and a group at the same time

If a paragraph is set in a group, it may be necessary to ensure that the \par ending the para-
graph occurs inside the group. The parameters influencing the typesetting of the paragraph,
such as the \leftskip and the \baselineskip, are only looked at when the paragraph is
finished. Thus finishing off a paragraph with
... last words.}\par

causes the values to be used that prevail outside the group, instead of those inside.

Better ways to end the paragraph are
... last words.\par}

or
... last words.\medskip}

In the second example the vertical command \medskip causes the \par token to be inser-
ted.

Victor Eijkhout – TEX by Topic 167

Chapter 17. Paragraph End

17.2.2 Ending a paragraph with \hfill\break

The sequence \hfill\break is a way to force a ‘newline’ inside a paragraph. If you end a
paragraph with this, however, you will probably get an Underfull \hbox error. Surprisin-
gly, the underfull box is not the broken line – after all, that one was filled – but a completely
empty box following it (actually, it does contain the \leftskip and \rightskip).

What happens? The paragraph ends with
\hfill\break\par

which turns into
\hfill\break\unskip\nobreak\hskip\parfillskip

The \unskip finds no preceding glue, so the \break is followed by a penalty item and a
glue item, both of which disappear after the line break has been chosen at the \break. Ho-
wever, TEX has already decided that there should be an extra line, that is, an \hbox to \hsize.
And there is nothing to fill it with, so an underfull box results.

17.2.3 Ending a paragraph with a rule

See page 102 for paragraphs ending with rule leaders instead of the default \parfillskip
white space.

17.2.4 No page breaks in between paragraphs

The \par command does not insert any glue in the vertical list, so in the sequence
... last words.\par \nobreak \medskip
\noindent First words ...

no page breaks will occur between the paragraphs. The vertical list generated is
\hbox(6.94444+0.0)x ... % last line of paragraph
\penalty 10000 % \nobreak
\glue 6.0 plus 2.0 minus 2.0 % \medskip
\glue(\parskip) 0.0 plus 1.0 % \parskip
\glue(\baselineskip) 5.05556 % interline glue
\hbox(6.94444+0.0)x ... % first line of paragraph

TEX will not break this vertical list above the \medskip, because the penalty value prohibits
it; it will not break at any other place, because it can only break at glue if that glue is
preceded by a non-discardable item.

17.2.5 Finite \parfillskip

In plain TEX, \parfillskip has a (first-order) infinite stretch component. All other glue
in the last line of a paragraph will then be set at natural width. If the \parfillskip has
only finite (or possibly zero) stretch, other glue will be stretched or shrunk. A display
formula in a paragraph with such a last line will be surrounded by \abovedisplayskip
and \belowdisplayskip, even if \abovedisplayshortskip glue would be in order.

The reason for this is that glue setting is slightly machine-dependent, and any such proces-
ses should be kept out of TEX’s global decisions.

168 Victor Eijkhout – TEX by Topic

17.2. Assorted remarks

17.2.6 A precaution for paragraphs that do not indent

If you are setting a text with both the paragraph indentation and the white space between
paragraphs zero, you run the risk that the start of a new paragraph may be indiscernible
when the last line of the previous paragraph ends almost or completely flush right. A sen-
sible precaution for this is to set the \parfillskip to, for instance
\parfillskip=1cm plus 1fil

instead of the usual 0cm plus 1fil.

On the other hand, you may let yourself be convinced by [46] that paragraphs should always
indent.

Victor Eijkhout – TEX by Topic 169

Chapter 18

Paragraph Shape

This chapter treats the parameters and commands that influence the shape of a paragraph.
\parindent Width of the indentation box added in front of a paragraph. Plain TEX default: 20pt.
\hsize Line width used for typesetting a paragraph. Plain TEX default: 6.5in.
\leftskip Glue that is placed to the left of all lines of a paragraph.
\rightskip Glue that is placed to the right of all lines of a paragraph.
\hangindent If positive, this indicates indentation from the left margin; if negative, this

is the negative of the indentation from the right margin.
\hangafter If positive, this denotes the number of lines before indenting starts; if nega-

tive, the absolute value of this is the number of indented lines starting with the first
line of the paragraph. Default: 1.

\parshape Command for general paragraph shapes.

18.1 The width of text lines
When TEX has finished absorbing a paragraph, it has formed a horizontal list, starting with
an indentation box, and ending with \parfillskip glue. This list is then broken into lines
of length \hsize. Each line of a paragraph is padded left and right with certain amounts of
glue, the \leftskip and \rightskip, which are taken into account in reaching \hsize.

The values of \leftskip and \rightskip are taken into account in the line-breaking
algorithm. Thus the main point about the \raggedright macro in plain TEX and the LATEX
‘flushleft’ environment is that they set the \rightskip to zero plus some stretch.

The commands \parshape and \hangindent also affect line width. They work by alte-
ring the \hsize and afterwards shifting the boxes containing the lines.

18.2 Shape parameters
18.2.1 Hanging indentation

A simple, and frequently occurring, paragraph shape is that with a number of starting or
trailing lines indented. TEX can realize such shapes using two parameters: \hangafter
and \hangindent. Both can assume positive and negative values.

170

18.2. Shape parameters

The \hangindent controls the amount of indentation:

• \hangindent > 0: the paragraph is indented at the left margin by this amount.
• \hangindent < 0: the paragraph is indented at the right margin by the absolute

value of this amount.

For example (assume \parindent=0pt),

a a a a a a a a a a a a ...

\hangindent=10pt
a a a a a a a a a a a a ...

\hangindent=-10pt
a a a a a a a a a a a a ...

gives

a a a a a
a a a a a
a a . . .
a a a a a

a a a a
a a a . . .

a a a a a
a a a a
a a a . . .

The default value of \hangindent is 0pt.

The \hangafter parameter determines the number of lines that is indented:

• \hangafter ≥ 0: after this number of lines the rest of the lines will be indented;
in other words, this many lines from the start of the paragraph will not be indented.

• \hangafter < 0: the absolute value of this is the number of lines that will be
indented starting at the beginning of the paragraph.

For example,

a a a a a a a a a a a a ...

\hangindent=10pt \hangafter=2
a a a a a a a a a a a a ...

\hangindent=10pt \hangafter=-2
a a a a a a a a a a a a ...

a a a a a
a a a a a
a a . . .
a a a a a
a a a a a

a a . . .
a a a a
a a a a

a a a a . . .
The default value for \hangafter is 1.

With both parameters having the possibility to be positive and negative, four ways of han-
ging indentation result. See below for hanging indentation into the margin (‘outdent’).

Hanging indentation is implemented as follows. The amount of hanging indentation is sub-
tracted from the \hsize for the lines that indent; after the paragraph has been broken into
horizontal boxes, the lines that should indent on the left are shifted right.

Regular indentation of size \parindent is not influenced by hanging indentation. Thus
you should start a paragraph with hanging indentation explicitly by \noindent if the extra
indentation is unwanted.

The default values of \hangindent and \hangafter are restored after every \par com-
mand.

Victor Eijkhout – TEX by Topic 171

Chapter 18. Paragraph Shape

18.2.2 General paragraph shapes: \parshape

Quite general paragraph shapes can be implemented using \parshape. With this command
line lengths and indentation for the first n lines of a paragraph can be specified. Thus
this command takes 2n + 1 parameters: the number of lines n, followed by n pairs of an
indentation and a line length.

\parshape〈equals〉 n i1 `1 . . . in `n

The specification for the last line is repeated if the paragraph following has more than n
lines. If there are fewer than n lines the remaining specifications are ignored. The default
value is (naturally) \parshape = 0.

A \parshape command takes precedence over a \hangindent if both have been speci-
fied. Regular \parindent, \leftskip, and \rightskip are still obeyed if \parshape
is in effect.

The \parshape parameter is, like \hangindent, \hangafter, and \looseness (see
Chapter 19), cleared after a \par command. Since every empty line generates a \par token,
one should not leave an empty line between a paragraph shape (or hanging indentation)
declaration and the following paragraph.

The control sequence \parshape is an 〈internal integer〉: its value is the number of lines
n with which it was set.

18.3 Assorted remarks
18.3.1 Centred last lines

Equal stretch and shrink amounts for the \leftskip and \rightskip give centred texts,
in the sense that each line is centred. For proper centring of the first and last lines of a pa-
ragraph the \parindent and \parfillskip have to be made zero. However, the margins
are ragged.

A surprising application of \leftskip and \rightskip leads to paragraphs with flush
margins and a centred last line.

\leftskip=0cm plus 0.5fil \rightskip=0cm plus -0.5fil
\parfillskip=0cm plus 1fil

For all lines of a paragraph but the last one the stretch components add up to zero so the
\leftskip and \rightskip inserted are zero. On the last line the \parfillskip adds
plus 1fil of stretch; therefore there is a total of plus 0.5fil of stretch at both the left
and right end of the line.

It would have been incorrect to specify

\leftskip=0cm plus 0.5fil \rightskip=0cm minus 0.5fil

TEX gives an error about this: it complains about ‘infinite shrinkage’.

Centring not only the last line, but also the first line of a paragraph can be done by the
parameter settings

172 Victor Eijkhout – TEX by Topic

18.3. Assorted remarks

\parindent=0pt \everypar{\hskip 0pt plus -1fil}
\leftskip=0pt plus .5fil
\rightskip=0pt plus -.5fil

This time a horizontal skip inserted by \everypar combines with the \leftskip to give
the same amount of stretchability on both sides of the first line of the paragraph.

18.3.2 Indenting into the margin

Suppose you want a hanging indent of 1cm into the left margin after the first two lines
of a paragraph. Specifying \hangindent=-1cm will give a hanging indentation of one
centimetre from the right margin, so another approach is necessary. The following does the
job:

\leftskip=-1cm \hangindent=1cm \hangafter=-2

The only problem with this is that the leftskip needs to be reset after the paragraph. Suitable
redefinition of \par removes this objection:

\def\hangintomargin{\bgroup
\leftskip=-1cm \hangindent=1cm \hangafter=-2
\def\par{\endgraf\egroup}}

The redefinition of \par is here local to the paragraph that should be outdented.

Another, elegant, solution uses \parshape:

\dimen0=\hsize \advance\dimen0 by 1cm
\parshape=3 % three lines:

0cm\hsize % first line specification
0cm\hsize % second line specification
-1cm\dimen0 % third line specification

18.3.3 Hang a paragraph from an object

The LATEX format has a macro, \@hangfrom, to have one paragraph of text hanging from
some object, usually a box or a short line of text.

Example This paragraph is an example of the \hangfrom macro defined below. In the
LATEX document styles, the \@hangfrom macro (which is similar to this) is used
for multi-line section headings.

Consider then the macro \hangfrom:

\def\hangfrom#1{\def\hangobject{#1}\setbox0=\hbox{\hangobject}%
\hangindent \wd0 \noindent \hangobject \ignorespaces}

Because of the default \hangafter=1, this will produce one line of width \hsize, after
which the rest of the paragraph will be left indented by the width of the \hangobject.

Victor Eijkhout – TEX by Topic 173

Chapter 18. Paragraph Shape

18.3.4 Another approach to hanging indentation

Hanging indentation can also be attained by a combination of shifting the left margin and
outdenting. Itemized lists can for instance be implemented in this manner:
\newdimen\listindent
\def\itemize{\begingroup

\advance\leftskip by \listindent
\parindent=-\listindent}

\def\stopitemize{\par\endgroup}
\def\item#1{\par\leavevmode

\hbox to \listindent{#1\hfil}\ignorespaces
}

If an item should encompass more than one paragraph, the implementation could be
\newdimen\listindent \newdimen\listparindent
\def\itemize{\begingroup

\advance\leftskip by \listindent
\parindent=\listparindent}

\def\stopitemize{\par\endgroup}
\def\item#1{\par\noindent

\hbox to 0cm{\kern-\listindent #1\hfil}\ignorespaces
}

\itemize\item{1.}First item\par
Is two paragraphs long.
\item{2.}Second item.\stopitemize
gives

1. First item
Is two paragraphs long.

2. Second item.

18.3.5 Hanging indentation versus \leftskip shifting

From the above examples it would seem that hanging indentation and modifying the \leftskip
and \rightskip are interchangeable. They are, but only to a certain extent.

Setting \leftskip to some positive value for a paragraph means that the \hsize stays
the same, but every line starts with a glue item. Hanging indentation, on the other hand,
is implemented by decreasing the \hsize value for the lines that hang, and shifting the
finished horizontal boxes horizontally in the surrounding vertical list.

The difference between the two approaches becomes visible mainly in the fact that display
formulas are not shifted when the \leftskip is altered. See Chapter 9 for an example
showing how leaders are affected by margin shifting.

18.3.6 More examples

Some more examples of paragraph shapes (effected by various means) can be found in [10].
One example from that article appears on page 71.

174 Victor Eijkhout – TEX by Topic

Chapter 19

Line Breaking

This chapter treats line breaking and the concept of ‘badness’ that TEX uses to decide how
to break a paragraph into lines, or where to break a page. The various penalties contributing
to the cost of line breaking are treated here, as is hyphenation. Page breaking is treated in
Chapter 27.

\penalty Specify desirability of not breaking at this point.
\linepenalty Penalty value associated with each line break. Plain TEX default: 10.
\hyphenpenalty Penalty associated with break at a discretionary item in the general

case. Plain TEX default: 50.
\exhyphenpenalty Penalty for breaking a horizontal line at a discretionary item in the

special case where the prebreak text is empty. Plain TEX default: 50.
\adjdemerits Penalty for adjacent visually incompatible lines. Plain TEX default: 10 000.
\doublehyphendemerits Penalty for consecutive lines ending with a hyphen. Plain TEX

default: 10 000.
\finalhyphendemerits Penalty added when the penultimate line of a paragraph ends

with a hyphen. Plain TEX default: 5000.
\allowbreak Macro for creating a breakpoint by inserting a \penalty0.
\pretolerance Tolerance value for a paragraph without hyphenation. Plain TEX default: 100.
\tolerance Tolerance value for lines in a paragraph with hyphenation. Plain TEX default: 200.
\emergencystretch (TEX3 only) Assumed extra stretchability in lines of a paragraph.
\looseness Number of lines by which this paragraph has to be made longer than it would

be ideally.
\prevgraf The number of lines in the paragraph last added to the vertical list.
\discretionary Specify the way a character sequence is split up at a line break.
\- Discretionary hyphen; this is equivalent to \discretionary{-}{}{}.
\hyphenchar Number of the hyphen character of a font.
\defaulthyphenchar Value of \hyphencharwhen a font is loaded. Plain TEX default: ‘\-.
\uchyph Positive to allow hyphenation of words starting with a capital letter. Plain TEX

default: 1.
\lefthyphenmin (TEX3 only) Minimal number of characters before a hyphenation. Plain

TEX default: 2.
\righthyphenmin (TEX3 only) Minimum number of characters after a hyphenation. Plain

TEX default: 3.

175

Chapter 19. Line Breaking

\patterns Define a list of hyphenation patterns for the current value of \language; al-
lowed only in IniTEX.

\hyphenation Define hyphenation exceptions for the current value of \language.
\language Choose a set of hyphenation patterns and exceptions.
\setlanguage Reset the current language.

19.1 Paragraph break cost calculation
A paragraph is broken such that the amount d of demerits associated with breaking it
is minimized. The total amount of demerits for a paragraph is the sum of those for the
individual lines, plus possibly some extra penalties. Considering a paragraph as a whole
instead of breaking it on a line-by-line basis can lead to better line breaking: TEX can
choose to take a slightly less beautiful line in the beginning of the paragraph in order to
avoid bigger trouble later on.

For each line demerits are calculated from the badness b of stretching or shrinking the line
to the break, and the penalty p associated with the break. The badness is not allowed to
exceed a certain prescribed tolerance.

In addition to the demerits for breaking individual lines, TEX assigns demerits for the way
lines combine; see below.

The implementation of TEX’s paragraphbreaking algorithm is explained in [27].

19.1.1 Badness

From the ratio between the stretch or shrink present in a line, and the actual stretch or shrink
taken, the ‘badness’ of breaking a line at a certain point is calculated. This badness is an
important factor in the process of line breaking. See page 95 for the formula for badness.

In this chapter badness will only be discussed in the context of line breaking. Badness is
also computed when a vertical list is stretched or shrunk (see Chapter 27).

The following terminology is used to describe badness:

tight (3) is any line that has shrunk with a badness b ≥ 13, that is, by using at least one-half
of its amount of shrink (see page 95 for the computation).

decent (2) is any line with a badness b ≤ 12.
loose (1) is any line that has stretched with a badness b ≥ 13, that is, by using at least

one-half of its amount of stretch.
very loose (0) is any line that has stretched with a badness b ≥ 100, that is, by using its

full amount of stretch or more. Recall that glue can stretch, but not shrink more
than its allowed amount.

The numbering is used in trace output (Chapter 34), and it is also used in the following
definition: if the classifications of two adjacent lines differ by more than 1, the lines are
said to be visually incompatible . See below for the \adjdemerits parameter associated
with this.

176 Victor Eijkhout – TEX by Topic

19.1. Paragraph break cost calculation

Overfull horizontal and vertical boxes are passed unnoticed if their excess width or height
is less than \hfuzz or \vfuzz respectively; they are not reported if the badness is less than
\hbadness or \vbadness (see Chapter 5).

19.1.2 Penalties and other break locations

Line breaks can occur at the following places in horizontal lists:

1. At a penalty. The penalty value is the ‘aesthetic cost’ of breaking the line at that
place. Negative penalties are considered as bonuses. A penalty of 10 000 or more
inhibits, and a penalty of −10 000 or less forces, a break.
Putting more than one penalty in a row is equivalent to putting just the one with
the minimal value, because that one is the best candidate for line breaking.
Penalties in horizontal mode are inserted by the user (or a user macro). The only
exception is the \nobreak inserted before the \parfillskip glue.

2. At a glue, if it is not part of a math formula, and if it is preceded by a non-
discardable item (see Chapter 6). There is no penalty associated with breaking
at glue.
The condition about the non-discardable precursor is necessary, because otherwise
breaking in between two pieces of glue would be possible, which would cause
ragged edges to the paragraph.

3. At a kern, if it is not part of a math formula and if it is followed by glue. There is
no penalty associated with breaking at a kern.

4. At a math-off, if that is followed by glue. Since math-off (and math-on) act as
kerns (see Chapter 23), this is very much like the previous case. There is no penalty
associated with breaking at a math-off.

5. At a discretionary break. The penalty is the \hyphenpenalty or the \exhyphenpenalty.
This is treated below.

Any discardable material following the break – glue, kerns, math-on/off and penalties – is
discarded. If one considers a line break at glue (kern, math-on/off) to occur at the front end
of the glue item, this implies that that piece of glue disappears in the break.

19.1.3 Demerits

From the badness of a line and the penalty, if any, the demerits of the line are calculated.
Let l be the value of \linepenalty, b the badness of the line, p the penalty at the break;
then the demerits d are given by

d =

 (l + b)2 + p2 if 0 ≤ p < 10 000
(l + b)2 − p2 if −10 000 < p < 0
(l + b)2 if p ≤ −10 000

Both this formula and the one for the badness are described in [27] as ‘quite arbitrary’, but
they have been shown to lead to good results in practice.

The demerits for a paragraph are the sum of the demerits for the lines, plus

• the \adjdemerits for any two adjacent lines that are not visually compatible (see
above),

Victor Eijkhout – TEX by Topic 177

Chapter 19. Line Breaking

• \doublehyphendemerits for any two consecutive lines ending with a hyphen,
and the

• \finalhyphendemerits if the penultimate line of a paragraph ends with a hy-
phen.

At the start of a paragraph TEX acts as if there was a preceding line which was ‘decent’.
Therefore \adjdemerits will be added if the first line is ‘very loose’. Also, the last line
of a paragraph is ordinarily also ‘decent’ – all spaces are set at natural width owing to the
infinite stretch in the \parfillskip – so \adjdemerits are added if the preceding line
is ‘very loose’.

Note that the penalties at which a line break is chosen weigh about as heavily as the badness
of the line, so they can be relatively small. However, the three extra demerit parameters have
to be of the order of the square of penalties and badnesses to weigh equally heavily.

19.1.4 The number of lines of a paragraph

After a paragraph has been completed (or partially completed prior to a display), the varia-
ble \prevgraf records the number of lines in the paragraph. By assigning to this variable
– and because this is a 〈special integer〉 such an assignment is automatically global – TEX’s
decision processes can be influenced. This may be useful in combination with hanging
indentation or \parshape specifications (see Chapter 18).

Some direct influence of the linebreaking process on the resulting number of lines exists.
One factor is the \linepenalty which is included in the demerits of each line. By incre-
asing the line penalty TEX can be made to minimize the number of lines in a paragraph.

Deviations from the optimal number of lines, that is, the number of lines stemming from
the optimal way of breaking a paragraph into lines, can be forced by the user by means of
the \looseness parameter. This parameter, which is reset every time the shape parameters
are cleared (see Chapter 18), indicates by how many lines the current paragraph should be
made longer than is optimal. A negative value of \looseness will attempt to make the
paragraph shorter by a number of lines that is the absolute value of the parameter.

TEX will still observe the values of \pretolerance and \tolerance (see below) when
lengthening or shortening a paragraph under influence of \looseness. Therefore, TEX
will only lengthen or shorten a paragraph for as far as is possible without exceeding these
parameters.

19.1.5 Between the lines

TEX’s paragraph mechanism packages lines into horizontal boxes that are appended to the
surrounding vertical list. The resulting sequence of vertical items is then a repeating se-
quence of

• a box containing a line of text,
• possibly migrated vertical material (see page 76),
• a penalty item reflecting the cost of a page break at that point, which is normally

the \interlinepenalty (see Chapter 27), and

178 Victor Eijkhout – TEX by Topic

19.2. The process of breaking

• interline glue, which is calculated automatically on basis of the \prevdepth (see
Chapter 15).

19.2 The process of breaking

TEX tries to break paragraphs in such a way that the badness of each line does not exceed
a certain tolerance. If there exists more than one solution to this, the one with the fewest
demerits is taken.

By setting \tracingparagraphs to a positive value, TEX can be made to report the cal-
culations of the paragraph mechanism in the log file. Some implementations of TEX may
have this option disabled to make TEX run faster.

19.2.1 Three passes

First an attempt is made to split the paragraph into lines without hyphenating, that is, wi-
thout inserting discretionary hyphens. This attempt succeeds if none of the lines has a
badness exceeding \pretolerance.

Otherwise, a second pass is made, inserting discretionaries and using \tolerance. If
\pretolerance is negative, the first pass is omitted.

TEX can be made to make a third pass if the first and second pass fail. If \emergencystretch
is a positive dimension, TEX will assume this much extra stretchability in each line when
badness and demerits are calculated. Thus solutions that only slightly exceeded the given
tolerances will now become feasible. However, no glue of size \emergencystretch is
actually present, so underfull box messages may still occur.

19.2.2 Tolerance values

How much trouble TEX will have typesetting a piece of text depends partly on the tolerance
value. Therefore it is sensible to have some idea of what badness values mean in visual
terms.

For lines that are stretched, the badness is 100 times the cube of the stretch ratio. A badness
of 800 thus means that the stretch ratio is 2. If the space is, as in the ten-point Computer
Modern Font,

3.33pt plus 1.67pt minus 1.11pt

a badness of 800 means that spaces have been stretched to

3.33pt + 2× 1.67pt = 6.66pt

that is, to exactly double their natural size. It is up to you to decide whether this is too large.

Victor Eijkhout – TEX by Topic 179

Chapter 19. Line Breaking

19.3 Discretionaries
A discretionary item \discretionary{..}{..}{..} marks a place where a word can
be broken. Each of the three arguments is a 〈general text〉 (see Chapter 36): they are, in
sequence,

• the pre-break text, which is appended to the part of the word before the break,
• the post-break text, which is prepended to the part of the word after the break, and
• the no-break text, which is used if the word is not broken at the discretionary item.

For example: ab\discretionary{g}{h}{cd}ef is the word abcdef, but it can be hy-
phenated with abg before the break and hef after. Note that there is no automatic hyphen
character.

All three texts may contain any sorts of tokens, but any primitive commands and macros
should expand to boxes, kerns, and characters.

19.3.1 Hyphens and discretionaries

Internally, TEX inserts the equivalent of

\discretionary{\char\hyphenchar\font}{}{}

at every place where a word can be broken. No such discretionary is inserted if \hyphenchar\font
is not in the range 0–255, or if its position in the font is not filled. When a font is loaded,
its \hyphenchar value is set to \defaulthyphenchar. The \hyphenchar value can be
changed after this.

In plain TEX the \defaulthyphenchar has the value ‘\-, so for all fonts character 45
(the ASCII hyphen character) is the hyphen sign, unless it is specified otherwise.

The primitive command \- (called a ‘discretionary hyphen’) \-is equivalent to the above
\discretionary{\char\hyphenchar\font}{}{}. Breaking at such a discretionary, whe-
ther inserted implicitly by TEX or explicitly by the user, has a cost of \hyphenpenalty.

In unrestricted horizontal mode an empty discretionary \discretionary{}{}{} is au-
tomatically inserted after characters whose character code is the \hyphenchar value of
the font, thus enabling hyphenation at that point. The penalty for breaking a line at such
a discretionary with an empty pre-break text is \exhyphenpenalty, that is, the ‘explicit
hyphen’ penalty.

If a word contains discretionary breaks, for instance because of explicit hyphen characters,
TEX will not consider it for further hyphenation. People have solved the ensuing problems
by tricks such as

\def\={\penalty10000 \hskip0pt -\penalty0 \hskip0pt\relax}
... integro\=differential equations...

The skips before and after the hyphen lead TEX into treating the first and second half of the
compound expression as separate words; the penalty before the first skip inhibits breaking
before the hyphen.

180 Victor Eijkhout – TEX by Topic

19.4. Hyphenation

19.3.2 Examples of discretionaries

Languages such as German or Dutch have words that change spelling when hyphenated
(German: ‘backen’ becomes ‘bak-ken’; Dutch: ‘autootje’ becomes ‘auto-tje’). This pro-
blem can be solved with TEX’s discretionaries.

For instance, for German (this is inspired by [36]):
\catcode‘\"=\active
\def"#1{\ifx#1k\discretionary{k-}{k}{ck}\fi}

which enables the user to write ba"ken.

In Dutch there is a further problem which allows a nice systematic solution. Umlaut cha-
racters (‘trema’ is the Dutch term) should often disappear in a break, for instance ‘na”apen’
hyphenates as ‘na-apen’, and ‘onbe”invloedbaar’ hyphenates as ‘onbe-invloedbaar’. A so-
lution (inspired by [5]) is
\catcode‘\"=\active
\def"#1{\ifx#1i\discretionary{-}{i}{\"\i}%

\else \discretionary{-}{#1}{\"#1}\fi}

which enables the user to type na"apen and onbe"invloedbaar.

19.4 Hyphenation
TEX’s hyphenation algorithm uses a list of patterns to determine at what places a word that
is a candidate for hyphenation can be broken. Those aspects of hyphenation connected with
these patterns are treated in appendix H of the TEX book; the method of generating hyphe-
nation patterns automatically is described in [30]. People have been known to generate lists
of patterns by hand; see for instance [28]. Such hand-generated lists may be superior to
automatically generated lists.

Here it will mainly be described how TEX declares a word to be a candidate for hyphena-
tion. The problem here is how to cope with punctuation and things such as quotation marks
that can be attached to a word. Also, implicit kerns , that is, kerns inserted because of font
information, must be handled properly.

19.4.1 Start of a word

TEX starts at glue items (if they are not in math mode) looking for a starting letter of
a word: a character with non-zero \lccode, or a ligature starting with such a character
(upper/lowercase codes are explained on page 48). Looking for this starting letter, TEX
bypasses any implicit kerns, and characters with zero \lccode (this includes, for instance,
punctuation and quotation marks), or ligatures starting with such a character.

If no suitable starting letter turns up, that is, if something is found that is not a character or
ligature, TEX skips to the next glue, and starts this algorithm anew. Otherwise a trial word is
collected consisting of all following characters with non-zero \lccode from the same font
as the starting letter, or ligatures consisting completely of such characters. Implicit kerns
are allowed between the characters and ligatures.

Victor Eijkhout – TEX by Topic 181

Chapter 19. Line Breaking

If the starting letter is from a font for which the value of \hyphenchar is invalid, or for
which this character does not exist, hyphenation is abandoned for this word. If the starting
letter is an uppercase letter (that is, it is not equal to its own \lccode), TEX will abandon
hyphenation unless \uchyph is positive. The default value for this parameter is 1 in plain
TEX, implying that capitalized words are subject to hyphenation.

19.4.2 End of a word

Following the trial word can be characters (from another font, or with zero \lccode),
ligatures or implicit kerns. After these items, if any, must follow

• glue or an explicit kern,
• a penalty,
• a whatsit, or
• a \mark, \insert, or \vadjust item.

In particular, the word will not be hyphenated if it is followed by a

• box,
• rule,
• math formula, or
• discretionary item.

Since discretionaries are inserted after the \hyphenchar of the font, occurrence of this
character inhibits further hyphenation. Also, placement of accents is implemented using
explicit kerns (see Chapter 3), so any \accent command is considered to be the end of a
word, and inhibits hyphenation of the word.

19.4.3 TEX2 versus TEX3

There is a noticeable difference in the treatment of hyphenated fragments between TEX2
and TEX3. TEX2 insists that the part before the break should be at least two characters, and
the part after the break three characters, long. Typographically this is a sound decision: this
way there are no two-character pieces of a word stranded at the end or beginning of the
line. Both before and after the break there are at least three characters.

In TEX3 two integer parameters have been introduced to control the length of these frag-
ments: \lefthyphenmin and \righthyphenmin. These are set to 2 and 3 respectively
in the plain format for TEX3. If the sum of these two is 63 or more, all hyphenation is
suppressed.

Another addition in TEX3, the possibility to have several sets of hyphenation patterns, is
treated below.

19.4.4 Patterns and exceptions

The statements

\patterns〈general text〉
\hyphenation〈general text〉

182 Victor Eijkhout – TEX by Topic

19.5. Switching hyphenation patterns

are 〈hyphenation assignment〉s, which are 〈global assignment〉s. The \patterns com-
mand, which specifies a list of hyphenation patterns, is allowed only in IniTEX (see Chap-
ter 33), and all patterns must be specified before the first paragraph is typeset.

Hyphenation exceptions can be specified at any time with statements such as
\hyphenation{oxy-mo-ron gar-goyle}

which specify locations where a word may be hyphenated. Subsequent \hyphenation
statements are cumulative.

In TEX3 these statements are taken to hold for the language that is the current value of the
\language parameter.

19.5 Switching hyphenation patterns
When typesetting paragraphs, TEX (version 3) can use several sets of patterns and hyphe-
nation exceptions, for at most 256 languages.

If a \patterns or \hyphenation command is given (see above), TEX stores the patterns
or exceptions under the current value of the \language parameter. The \patterns com-
mand is only allowed in IniTEX, and patterns must be specified before any typesetting is
done. Hyphenation exceptions, however, can be specified cumulatively, and not only in
IniTEX.

In addition to the \language parameter, which can be set by the user, TEX has internally a
‘current language’. This is set to zero at the start of every paragraph. For every character that
is added to a paragraph the current language is compared with the value of \language, and
if they differ a whatsit element is added to the horizontal list, resetting the current language
to the value of \language.

At the start of a paragraph, this whatsit is inserted after the \everypar tokens, but \lastbox
can still access the indentation box.

As an example, suppose that a format has been created such that language 0 is English, and
language 1 is Dutch. English hyphenations will then be used if the user does not specify
otherwise; if a job starts with
\language=1

the whole document will be set using Dutch hyphenations, because TEX will insert a com-
mand changing the current language at the start of every paragraph. For example:
\language=1
T...

gives
.\hbox(0.0+0.0)x20.0 % indentation
.\setlanguage1 (hyphenmin 2,3) % language whatsit
.\tenrm T % start of text

The whatsit can be inserted explicitly, without changing the value of \language, by spe-
cifying

Victor Eijkhout – TEX by Topic 183

Chapter 19. Line Breaking

\setlanguage〈number〉
However, this will hardly ever be needed. One case where it may be necessary is when the
contents of a horizontal box are unboxed to a paragraph: inside the box no whatsits are
added automatically, since inside such a box no hyphenation can take place. See page 68
for another problem with text in horizontal boxes.

184 Victor Eijkhout – TEX by Topic

Chapter 20

Spacing

The usual interword space in TEX is specified in the font information, but the user can
override this. This chapter explains the rules by which TEX calculates interword space.
\ Control space. Insert the same amount of space as a space token would if \spacefactor =

1000.
\spaceskip Interword glue if non-zero.
\xspaceskip Interword glue if non-zero and \spacefactor ≥ 2000.
\spacefactor 1000 times the ratio by which the stretch (shrink) component of the inter-

word glue should be multiplied (divided).
\sfcode Value for \spacefactor associated with a character.
\frenchspacing Macro to switch off extra space after punctuation.
\nonfrenchspacing Macro to switch on extra space after punctuation.

20.1 Introduction
In between words in a text, TEX inserts space. This space has a natural component, plus
stretch and shrink to make justified (right-aligned) text possible. Now, in certain styles of
typesetting, there is more space after punctuation. This chapter discusses the mechanism
that TEX uses to realize such effect.

Here is the general idea:
• After every character token, the \spacefactor quantity is updated with the space

factor code of that character.
• When space is inserted, its natural size can be augmented (if \spacefactor ≥

2000), and in general its stretch is multiplied, and its shrink divided, by \spacefactor/1000.
• There are further rules, for instance so that in ...word.) And... the space is

modified according to the period, not the closing parenthesis.

20.2 Automatic interword space
For every space token in horizontal mode the interword glue of the current font is inserted,
with stretch and shrink components, all determined by \fontdimen parameters. To be

185

Chapter 20. Spacing

specific, font dimension 2 is the normal interword space, dimension 3 is the amount of
stretch of the interword space, and 4 is the amount of shrink. Font dimension 7 is called the
‘extra space’; see below (the list of all the font dimensions appears on page 54).

Ordinarily all spaces between words (in one font) would be treated the same. To allow
for differently sized spaces – for instance a typeset equivalent of the double spacing after
punctuation in typewritten documents – TEX associates with each character a so-called
‘space factor’.

When a character is added to the current horizontal list, the space factor code (\sfcode)
of that character is assigned to the space factor \spacefactor. There are two exceptions
to this rule:

• When the space factor code is zero, the \spacefactor does not change. This
mechanism allows space factors to persist through parentheses and such; see sec-
tion 20.5.3.

• When the space factor code of the last character is >1000 and the current space
factor is <1000, the space factor becomes 1000. This mechanism prevents elon-
gated spaces after initials; see section 20.5.2.

The maximum space factor is 32 767.

The stretch component of the interword space is multiplied by the space factor divided by
1000; the shrink component is divided by this factor. The extra space (font dimension 7) is
added to the natural component of the interword space when the space factor is ≥ 2000.

20.3 User interword space

The user can override the interword space contained in the \fontdimen parameters by
setting the \spaceskip and the \xspaceskip to non-zero values. If \spaceskip is non-
zero, it is taken instead of the normal interword space (\fontdimen2 plus \fontdimen3
minus \fontdimen4), but a non-zero \xspaceskip is used as interword space if the space
factor is ≥ 2000.

If the \spaceskip is used, its stretch and shrink components are multiplied and divided
respectively by \spacefactor/1000.

Note that, if \spaceskip and \xspaceskip are defined in terms of em, they change with
the font.

Let the following macros be given:
\def\a.{\vrule height10pt width4pt\spacefactor=1000\relax}
\def\b.{\vrule height10pt width4pt\spacefactor=3000\relax}
\def\c{\vrule height10pt width4pt\relax}

then

186 Victor Eijkhout – TEX by Topic

20.4. Control space and tie

\vbox{
\fontdimen2\font=4pt % normal space
\fontdimen7\font=3pt % extra space
\a. \b. \c\par
% zero extra space
\fontdimen7\font=0pt
\a. \b. \c\par
% set \spaceskip for normal space
\spaceskip=2\fontdimen2\font
\a. \b. \c\par
% set \xspaceskip
\xspaceskip=2pt
\a. \b. \c\par
}

gives

In all of these lines the glue is set at natural width. In the first line
the high space factor value after \b causes the extra space \fontdimen7
to be added. If this is zero (second line), the only difference between
space factor values is the stretch/shrink ratio. In the third line the
\spaceskip is taken for all space factor values. If the \xspaceskip
is nonzero, it is taken (fourth line) instead of the \spaceskip for the
high value of the space factor.

20.4 Control space and tie
Control space, \ , is a horizontal command which inserts a space, \ acting as if the
current space factor is 1000. However, it does not affect the value of \spacefactor.

Control space has two main uses. First, it is convenient to use after a control sequence:
\TeX\ is fun! Secondly, it can be used after abbreviations when \nonfrenchspacing
(see below) is in effect. For example:
\hbox spread 9pt{\nonfrenchspacing

The Reverend Dr. Drofnats}

gives
The Reverend Dr. Drofnats

while
\hbox spread 9pt{\nonfrenchspacing

The Reverend Dr.\ Drofnats}

gives
The Reverend Dr. Drofnats

(The spread 9pt is used to make the effect more visible.)

The active character (in the plain format) tilde, ~, uses control space: it is defined as
\catcode‘\~=\active
\def~{\penalty10000\ }

Victor Eijkhout – TEX by Topic 187

Chapter 20. Spacing

Such an active tilde is called a ‘tie’; it inserts an ordinary amount of space, and pro-
hibits breaking at this space.

20.5 More on the space factor
20.5.1 Space factor assignments

The space factor of a particular character can be assigned as

\sfcode〈8-bit number〉〈equals〉〈number〉
IniTEX assigns a space factor code of 1000 to all characters except uppercase charac-
ters; they get a space factor code of 999. The plain format then assigns space factor
codes greater than 1000 to various punctuation symbols, for instance \sfcode‘\.=3000,
which triples the stretch and shrink after a full stop. Also, for all space factor values
≥ 2000 the extra space is added; see above.

20.5.2 Punctuation

Because the space factor cannot jump from a value below 1000 to one above, a punc-
tuation symbol after an uppercase character will not have the effect on the interword
space that punctuation after a lowercase character has.

a% \sfcode‘a=1000, space factor becomes 1000
.% \sfcode‘.=3000, spacefactor becomes 3000
% subsequent spaces will be increased.

A% \sfcode‘A=999, space factor becomes 999
.% \sfcode‘.=3000, space factor becomes 1000
% subsequent spaces will not be increased.

Thus, initials are not mistaken for sentence ends. If an uppercase character does end a
sentence, for instance

... and NASA.

there are several solutions:

... NASA\spacefactor=1000.

or

... NASA\hbox{}.

which abuses the fact that after a box the space factor is set to 1000. The LATEX macro
\@ is equivalent to the first possibility.

In the plain format two macros are defined that switch between uniform interword
spacing and extra space after punctuation. The macro \frenchspacing sets the space
factor code of all punctuation to 1000; the macro \nonfrenchspacing sets it to va-
lues greater than 1000.

Here are the actual definitions from plain.tex:

188 Victor Eijkhout – TEX by Topic

20.5. More on the space factor

\def\frenchspacing{\sfcode‘\.\@m \sfcode‘\?\@m
\sfcode‘\!\@m \sfcode‘\:\@m
\sfcode‘\;\@m \sfcode‘\,\@m}

\def\nonfrenchspacing{\sfcode‘\.3000 \sfcode‘\?3000
\sfcode‘\!3000 \sfcode‘\:2000
\sfcode‘\;1500 \sfcode‘\,1250 }

where
\mathchardef\@m=1000

is given in the plain format.

French spacing is a somewhat controversial issue: the TEX book acts as if non-French
spacing is standard practice in printing, but for instance in [14] one finds ‘The space
of the line should be used after all points in normal text’. Extra space after punctuation
may be considered a ‘typewriter habit’, but this is not entirely true. It used to be a lot
more common than it is nowadays, and there are rational arguments against it: the full
stop (point, period) at the end of a sentence, where extra punctuation is most visible,
is rather small, so it carries some extra visual space of its own above it. This book
does not use extra space after punctuation.

20.5.3 Other non-letters

The zero value of the space factor code makes characters that are not a letter and not
punctuation ‘transparent’ for the space factor.

a% \sfcode‘a=1000, space factor becomes 1000
.% \sfcode‘.=3000, spacefactor becomes 3000
% subsequent spaces will be increased.

a% \sfcode‘a=1000, space factor becomes 1000
.% \sfcode‘.=3000, space factor becomes 3000
)% \sfcode‘)=0, space factor stays 3000
% subsequent spaces will be increased.

20.5.4 Other influences on the space factor

The space factor is 1000 when TEX starts forming a horizontal list, in particular after
\indent, \noindent, and directly after a display. It is also 1000 after a \vrule,
an accent, or a 〈box〉 (in horizontal mode), but it is not influenced by \unhbox or
\unhcopy commands.

In the first column of a \valign the space factor of the surrounding horizontal list is
carried over; similarly, after a vertical alignment the space factor is set to the value
reached in the last column.

Victor Eijkhout – TEX by Topic 189

Chapter 21

Characters in Math Mode

In math mode every character specifies by its \mathcode what position of a font to
access, among other things. For delimiters this story is a bit more complicated. This
chapter explains the concept of math codes, and shows how TEX implements variable
size delimiters.

\mathcode Code of a character determining its treatment in math mode.
\mathchar Explicit denotation of a mathematical character.
\mathchardef Define a control sequence to be a synonym for a math character code.
\delcode Code specifying how a character should be used as delimiter.
\delimiter Explicit denotation of a delimiter.
\delimiterfactor 1000 times the fraction of a delimited formula that should be

covered by a delimiter. Plain TEX default: 901
\delimitershortfall Size of the part of a delimited formula that is allowed to go

uncovered by a delimiter. Plain TEX default: 5pt
\nulldelimiterspace Width taken for empty delimiters. Plain TEX default: 1.2pt
\left Use the following character as an open delimiter.
\right Use the following character as a closing delimiter.
\big One line high delimiter.
\Big One and a half line high delimiter.
\bigg Two lines high delimiter.
\Bigg Two and a half lines high delimiter.
\bigl etc. Left delimiters.
\bigm etc. Delimiters used as binary relations.
\bigr etc. Right delimiters.
\radical Command for setting things such as root signs.
\mathaccent Place an accent in math mode.
\skewchar Font position of an after-placed accent.
\defaultskewchar Value of \skewchar when a font is loaded.
\skew Macro to shift accents on top of characters explicitly.
\widehat Hat accent that can accommodate wide expressions.
\widetilde Tilde accent that can accommodate wide expressions.

190

21.1. Mathematical characters

21.1 Mathematical characters
Each of the 256 permissible character codes has an associated \mathcode, which can
be assigned by

\mathcode〈8-bit number〉〈equals〉〈15-bit number〉
When processing in math mode, TEX replaces all characters of categories 11 and 12,
and \char and \chardef characters, by their associated mathcode.

The 15-bit math code is most conveniently denoted hexadecimally as "xyzz, where
x ≤ 7 is the class (see page 203),
y is the font family number (see Chapter 22), and
zz is the position of the character in the font.

Math codes can also be specified directly by a 〈math character〉, which can be
• \mathchar〈15-bit number〉;
• 〈mathchardef token〉, a control sequence that was defined by

\mathchardef〈control sequence〉〈equals〉〈15-bit number〉
or

• a delimiter command
\delimiter〈27-bit number〉

where the last 12 bits are discarded.
The commands \mathchar and \mathchardef are analogous to \char and \char-
def in text mode. Delimiters are treated below. A 〈mathchardef token〉 can be used as
a 〈number〉, even outside math mode.

In IniTEX all letters receive \mathcode "71zz and all digits receive "70zz, where
"zz is the hexadecimal position of the character in the font. Thus, letters are initially
from family 1 (math italic in plain TEX), and digits are from family 0 (roman). For
all other characters, IniTEX assigns

\mathcodex = x,
thereby placing them also in family 0.

If the mathcode is "8000, the smallest integer that is not a 〈15-bit number〉, the cha-
racter is treated as an active character with the original character code. Plain TEX
assigns a \mathcode of "8000 to the space, underscore and prime.

21.2 Delimiters
After \left and \right commands TEX looks for a delimiter. A delimiter is either
an explicit \delimiter command (or a macro abbreviation for it), or a character with
a non-zero delimiter code.

The \left and \right commands implicitly delimit a group, which is considered as
a subformula. Since the enclosed formula can be arbitrarily large, the quest for the
proper delimiter is a complicated story of looking at variants in two different fonts,
linked chains of variants in a font, and building extendable delimiters from repeatable
pieces.

Victor Eijkhout – TEX by Topic 191

Chapter 21. Characters in Math Mode

The fact that a group enclosed in \left...\right is treated as an independent sub-
formula implies that a sub- or superscript at the start of this formula is not considered
to belong to the delimiter. For example, TEX acts as if \left(_2 is equivalent to
\left({}_2. (A subscript after a \right delimiter is positioned with respect to that
delimiter.)

21.2.1 Delimiter codes

To each character code there corresponds a delimiter code, assigned by
\delcode〈8-bit number〉〈equals〉〈24-bit number〉

A delimiter code thus consists of six hexadecimal digits "uvvxyy, where
uvv is the small variant of the delimiter, and
xyy is the large variant;
u, x are the font families of the variants, and
vv, yy are the locations in those fonts.

Delimiter codes are used after \left and \right commands. IniTEX sets all delimiter
codes to −1, except \delcode‘.=0, which makes the period an empty delimiter. In
plain TEX delimiters have typically u = 2 and x = 3, that is, first family 2 is tried,
and if no big enough delimiter turns up family 3 is tried.

21.2.2 Explicit \delimiter commands

Delimiters can also be denoted explicitly by a 〈27-bit number〉,
\delimiter"tuvvxyy

where uvvxyy are the small and large variant of the delimiter as above; the extra digit
t (which is < 8) denotes the class (see page 203). For instance, the \langle macro
is defined as
\def\langle{\delimiter "426830A }

which means it belongs to class 4, opening. Similarly, \rangle is of class 5, closing;
and \uparrow is of class 3, relation.

After \left and \right – that is, when TEX is looking for a delimiter – the class
digit is ignored; otherwise – when TEX is not looking for a delimiter – the rightmost
three digits are ignored, and the four remaining digits are treated as a \mathchar; see
above.

21.2.3 Finding a delimiter; successors

Typesetting a delimiter is a somewhat involved affair. First TEX determines the size y
of the formula to be covered, which is twice the maximum of the height and depth of
the formula. Thus the formula may not look optimal if it is not centred itself.

The size of the delimiter should be at least \delimiterfactor× y/1000 and at least
y − \delimitershortfall. TEX then tries first the small variant, and if that one is
not satisfactory (or if the uvv part of the delimiter is 000) it tries the large variant.

192 Victor Eijkhout – TEX by Topic

21.3. Radicals

If trying the large variant does not meet with success, TEX takes the largest delimiter
encountered in this search; if no delimiter at all was found (which can happen if the
xyy part is also 000), an empty box of width \nulldelimiterspace is taken.

Investigating a variant means, in sequence,
• if the current style (see page 201) is scriptscriptstyle the \scriptscriptfont

of the family is tried;
• if the current style is scriptstyle or smaller the \scriptfont of the family is

tried;
• otherwise the \textfont of the family is tried.
The plain format puts the cmex10 font in all three styles of family 3.

Looking for a delimiter at a certain position in a certain font means
• if the character is large enough, accept it;
• if the character is extendable, accept it;
• otherwise, if the character has a successor, that is, it is part of a chain of

increasingly bigger delimiters in the same font, try the successor.
Information about successors and extensibility of a delimiter is coded in the font me-
tric file of the font. An extendable character has a top, a bottom, possibly a mid piece,
and a piece which is repeated directly below the top piece, and directly above the bot-
tom piece if there is a mid piece.

21.2.4 \big, \Big, \bigg, and \Bigg delimiter macros

In order to be able to use a delimiter outside the \left...\right context, or to spe-
cify a delimiter of a different size than TEX would have chosen, four macros for ‘big’
delimiters exist: \big, \Big, \bigg, and \Bigg. These can be used with anything that
can follow \left or \right.

Twelve further macros (for instance \bigl, \bigm, and \bigr) force such delimiters
in the context of an opening symbol, a binary relation, and a closing symbol respec-
tively:
\def\bigl{\mathopen\big}
\def\bigm{\mathrel\big} \def\bigr{\mathclose\big}

The ‘big’ macros themselves put the requested delimiter and a null delimiter around
an empty vertical box:
\def\big#1{{\nulldelimiterspace=0pt \mathsurround=0pt

\hbox{$\left#1\vbox to 8.5pt{}\right.$}}}

As an approximate measure, the Big delimiters are one and a half times as large
(11.5pt) as big delimiters; bigg ones are twice (14.5pt), and Bigg ones are two and
a half times as large (17.5pt).

21.3 Radicals
A radical is a compound of a left delimiter and an overlined math expression. The
overlined expression is set in the cramped version of the surrounding style (see page 201).

Victor Eijkhout – TEX by Topic 193

Chapter 21. Characters in Math Mode

In the plain format and the Computer Modern math fonts there is only one radical:
the square root construct

\def\sqrt{\radical"270370 }

The control sequence \radical is followed by a 〈24-bit number〉 which specifies a
small and a large variant of the left delimiter as was explained above. Joining the
delimiter and the rule is done by letting the delimiter have a large depth, and a height
which is equal to the desired rule thickness. The rule can then be placed on the current
baseline. After the delimiter and the ruled expression have been joined the whole is
shifted vertically to achieve the usual vertical centring (see Chapter 23).

21.4 Math accents
Accents in math mode are specified by

\mathaccent〈15-bit number〉〈math field〉
Representing the 15-bit number as "xyzz, only the family y and the character po-
sition zz are used: an accented expression acts as \mathord expression (see Chap-
ter 23).

In math mode whole expressions can be accented, whereas in text mode only charac-
ters can be accented. Thus in math mode accents can be stacked. However, the top
accent may (or, more likely, will) not be properly positioned horizontally. Therefore
the plain format has a macro \skew that effectively shifts the top accent. Its definition
is

\def\skew#1#2#3{{#2{#3\mkern#1mu}\mkern-#1mu}{}}

and it is used for instance like

$\skew4\hat{\hat x}$

which gives ˆ̂x.

For the correct positioning of accents over single characters the symbol and extension
font have a \skewchar: this is the largest accent that adds to the width of an accen-
ted character. Positioning of any accent is based on the width of the character to be
accented, followed by the skew character.

The skew characters of the Computer Modern math italic and symbol fonts are cha-
racter "7F, ‘¨’, and "30, ‘0’, respectively. The \defaultskewchar value is assigned
to the \skewchar when a font is loaded. In plain TEX this is -1, so fonts ordinarily
have no \skewchar.

Math accents can adapt themselves to the size of the accented expression: TEX will
look for a successor of an accent in the same way that it looks for a successor of a de-
limiter. In the Computer Modern math fonts this mechanism is used in the \widehat
and \widetilde macros. For example,

\widehat x, \widehat{xy}, \widehat{xyz}

give

194 Victor Eijkhout – TEX by Topic

21.4. Math accents

x̂, x̂y, x̂yz

respectively.

Victor Eijkhout – TEX by Topic 195

Chapter 22

Fonts in Formulas

For math typesetting a single current font is not sufficient, as it is for text typesetting.
Instead TEX uses several font families, and each family can contain three fonts. This
chapter explains how font families are organized, and how TEX determines from what
families characters should be taken.

\fam The number of the current font family.
\newfam Allocate a new math font family.
\textfont Access the textstyle font of a family.
\scriptfont Access the scriptstyle font of a family.
\scriptscriptfont Access the scriptscriptstyle font of a family.

22.1 Determining the font of a character in math mode
The characters in math formulas can be taken from several different fonts (or better,
font families) without any user commands. For instance, in plain TEX math formulas
use the roman font, the math italic font, the symbol font and the math extension font.

In order to determine from which font a character is to be taken, TEX considers for
each character in a formula its \mathcode (this is treated in Chapter 21). A \mathcode
is a 15-bit number of the form "xyzz, where the hex digits have the following mea-
ning:

x: class,
y: family,
zz: position in font.

In general only the family determines from what font a character is to be taken. The
class of a math character is mostly used to control spacing and other aspects of type-
setting. Typical classes include ‘relation’, ‘operator’, ‘delimiter’.

Class 7 is special in this respect: it is called ‘variable family’. If a character has a
\mathcode of the form "7yzz it is taken from family y, unless the parameter \fam
has a value in the range 0–15; then it is taken from family \fam.

196

22.2. Initial family settings

22.2 Initial family settings
Both lowercase and uppercase letters are defined by IniTEX to have math codes "71zz,
which means that they are of variable family, initially from family 1. As TEX sets
fam=-1, that is, an invalid value, when a formula starts, characters are indeed taken
from family 1, which in plain TEX is math italic.

Digits have math code "70zz so they are initially from family 0, in plain TEX the
roman font. All other character codes have a mathcode assigned by IniTEX as

\mathcodex = x

which puts them in class 0, ordinary, and family 0, roman in plain TEX.

In plain TEX, commands such as \sl then set both a font and a family:

\def\sl{\fam\slfam\tensl}

so putting \sl in a formula will cause all letters, digits, and uppercase Greek charac-
ters, to change to slanted style.

In most cases, any font can be assigned to any family, but two families in TEX have a
special meaning: these are families 2 and 3. For instance, their number of \fontdimen
parameters is different from the usual 7. Family 2 needs 22 parameters, and family 3
needs 13. These parameters have all a very specialized meaning for positioning in
math typesetting. Their meaning is explained below, but for the full story the reader is
referred to appendix G of the TEX book.

22.3 Family definition
TEX can access 16 families of fonts in math mode; font families have numbers 0–15.
The number of the current family is recorded in the parameter \fam.

The macro \newfam gives the number of an unused family. This number is assigned
using \chardef to the control sequence.

Each font family can have a font meant for text style, script style, and scriptscript
style. Below it is explained how TEX determines in what style a (sub-) formula is to
be typeset.

Fonts are assigned to a family as follows:

\newfam\MyFam
\textfont\MyFam=\tfont \scriptfont\MyFam=\sfont
\scriptscriptfont\MyFam=\ssfont

for the text, script, and scriptscript fonts of a family. In general it is not necessary to
fill all three members of a family (but it is for family 3). If TEX needs a character from
a family member that has not been filled, it uses the \nullfont instead, a primitive
font that has no characters (nor a .tfm file).

Victor Eijkhout – TEX by Topic 197

Chapter 22. Fonts in Formulas

22.4 Some specific font changes
22.4.1 Change the font of ordinary characters and uppercase Greek

All letters and the uppercase Greek characters are by default in plain TEX of class 7,
variable family, so changing \fam will change the font from which they are taken. For
example

{\fam=9 x}

gives an x from family 9.

Uppercase Greek characters are defined by \mathchardef statements in the plain for-
mat as "70zz, that is, variable family, initially roman. Therefore, uppercase Greek
character also change with the family.

22.4.2 Change uppercase Greek independent of text font

In the Computer Modern font layout, uppercase Greek letters are part of the roman
font; see page 298. Therefore, introducing another text font (with another layout) will
change the uppercase Greek characters (or even make them disappear). One way of
remedying this is by introducing a new family in which the cmr font, which contains
the uppercase Greek, resides. The control sequences accessing these characters then
have to be redefined:

\newfam\Kgreek
\textfont\Kgreek=cmr10 ...
\def\hex#1{\ifcase#10\or 1\or 2\or 3\or 4\or 5\or 6\or

7\or 8\or 9\or A\or B\or C\or D\or E\or F\fi}
\mathchardef\Gamma="0\hex\Kgreek00 % was: "0100
\mathchardef\Beta ="0\hex\Kgreek01 % was: "0101
\mathchardef\Gamma ...

Note, by the way, the absence of a either a space or a \relax token after #1 in the
definition of \hex. This implies that this macro can only be called with an argument
that is a control sequence.

22.4.3 Change the font of lowercase Greek

and mathematical symbols

Lowercase Greek characters have math code "01zz, meaning they are always from
the math italic family. In order to change this one might redefine them, for instance
\mathchardef\alpha="710B, to make them variable family. This is not done in plain
TEX, because the Computer Modern roman font does not have Greek lowercase, alt-
hough it does have the uppercase characters.

Another way is to redefine them like \mathchardef\alpha="0n0B where n is the
(hexadecimal) number of a family compatible with math italic, containing for instance
a bold math italic font.

198 Victor Eijkhout – TEX by Topic

22.5. Assorted remarks

22.5 Assorted remarks
22.5.1 New fonts in formulas

There are two ways to access a font inside mathematics. After \font\newfont=....
it is not possible to get the ‘a’ of the new font by $...{\newfont a}...$ because
TEX does not look at the current font in math mode. What does work is
$... \hbox{\newfont a} ...$

but this precludes the use of the new font in script and scriptscript styles.

The proper solution takes a bit more work:
\font\newtextfont=...
\font\newscriptfont=... \font\newsscriptfont=...
\newfam\newfontfam
\textfont\newfontfam=\newtextfont
\scriptfont\newfontfam=\newscriptfont
\scriptscriptfont\newfontfam=\newsscriptfont
\def\newfont{\newtextfont \fam=\newfontfam}

after which the font can be used as
$... {\newfont a_{b_c}} ...$

in all three styles.

22.5.2 Evaluating the families

TEX will only look at what is actually in the \textfont et cetera of the various
families at the end of the whole formula. Switching fonts in the families is thus not
possible inside a single formula. The number of 16 families may therefore turn out to
be restrictive for some applications.

Victor Eijkhout – TEX by Topic 199

Chapter 23

Mathematics Typesetting

TEX has two math modes, display and non-display, and four styles, display, text, script,
and scriptscript style, and every object in math mode belongs to one of eight classes.
This chapter treats these concepts.

\everymath Token list inserted at the start of a non-display formula.
\everydisplay Token list inserted at the start of a display formula.
\displaystyle Select the display style of mathematics typesetting.
\textstyle Select the text style of mathematics typesetting.
\scriptstyle Select the script style of mathematics typesetting.
\scriptscriptstyle Select the scriptscript style of mathematics typesetting.
\mathchoice Give four variants of a formula for the four styles of mathematics ty-

pesetting.
\mathord Let the following character or subformula function as an ordinary object.
\mathop Let the following character or subformula function as a large operator.
\mathbin Let the following character or subformula function as a binary operation.
\mathrel Let the following character or subformula function as a relation.
\mathopen Let the following character or subformula function as a opening symbol.
\mathclose Let the following character or subformula function as a closing symbol.
\mathpunct Let the following character or subformula function as a punctuation sym-

bol.
\mathinner Let the following character or subformula function as an inner formula.
\mathaccent Place an accent in math mode.
\vcenter Construct a vertical box, vertically centred on the math axis.
\limits Place limits over and under a large operator.
\nolimits Place limits of a large operator as subscript and superscript expressions.
\displaylimits Restore default placement for limits.
\scriptspace Extra space after subscripts and superscripts. Plain TEX default: 0.5pt
\nonscript Cancel the next glue item if it occurs in scriptstyle or scriptscriptstyle.
\mkern Insert a kern measured in mu units.
\mskip Insert glue measured in mu units.
\muskip Prefix for skips measured in mu units.
\muskipdef Define a control sequence to be a synonym for a \muskip register.
\newmuskip Allocate a new muskip register.

200

23.1. Math modes

\thinmuskip Small amount of mu glue.
\medmuskip Medium amount of mu glue.
\thickmuskip Large amount of mu glue.
\mathsurround Kern amount placed before and after in-line formulas.
\over Fraction.
\atop Place objects over one another.
\above Fraction with specified bar width.
\overwithdelims Fraction with delimiters.
\atopwithdelims Place objects over one another with delimiters.
\abovewithdelims Generalized fraction with delimiters.
\underline Underline the following 〈math symbol〉 or group.
\overline Overline the following 〈math symbol〉 or group.
\relpenalty Penalty for breaking after a binary relation not enclosed in a subfor-

mula. Plain TEX default: 500
\binoppenalty Penalty for breaking after a binary operator not enclosed in a subfor-

mula. Plain TEX default: 700
\allowbreak Macro for creating a breakpoint.

23.1 Math modes
TEX changes to math mode when it encounters a math shift character, category 3, in
the input. After such an opening math shift it investigates (without expansion) the next
token to see whether this is another math shift. In the latter case TEX starts processing
in display math mode until a closing double math shift is encountered:

.. $$ displayed formula $$..

Otherwise it starts processing an in-line formula in non-display math mode:
.. $ in-line formula $..

The single math shift character is a 〈horizontal command〉.

Exception: displays are not possible in restricted horizontal mode, so inside an \hbox
the sequence $$ is an empty math formula and not the start of a displayed formula.

Associated with the two math modes are two 〈token parameter〉 registers (see also
Chapter 14): at the start of an in-line formula the \everymath tokens are inserted; at
the start of a displayed formula the \everydisplay tokens are inserted. Display math
is treated further in the next chapter.

Math modes can be tested for: \ifmmode is true in display and non-display math
mode, and \ifinner is true in non-display mode, but not in display mode.

23.2 Styles in math mode
Math formulas are set in any of eight styles:
D display style,

Victor Eijkhout – TEX by Topic 201

Chapter 23. Mathematics Typesetting

T text style,
S script style,
SS scriptscript style,
and the four ‘cramped’ variants D′, T ′, S′, SS′ of these. The cramped styles differ
mainly in the fact that superscripts are not raised as far as in the original styles.

23.2.1 Superscripts and subscripts

TEX can typeset a symbol or group as a superscript (or subscript) to the preceding
symbol or group, if that preceding item does not already have a superscript (subscript).
Superscripts (subscripts) are specified by the syntax

〈superscript〉〈math field〉
or

〈subscript〉〈math field〉
where a 〈superscript〉 (〈subscript〉) is either a character of category 7 (8), or a control
sequence \let to such a character. The plain format has the control sequences
\let\sp=^ \let\sb=_

as implicit superscript and subscript characters.

Specifying a superscript (subscript) expression as the first item in an empty math list
is equivalent to specifying it as the superscript (subscript) of an empty expression. For
instance,

$^{...} is equivalent to ${}^{...}

For TEX’s internal calculations, superscript and subscript expressions are made wider
by \scriptspace; the value of this in plain TEX is 0.5pt.

23.2.2 Choice of styles

Ordering the four styles D, T , S, and SS, and considering the other four as mere
variants, the style rules for math mode are as follows:
• In any style superscripts and subscripts are taken from the next smaller style.

Exception: in display style they are taken in script style.
• Subscripts are always in the cramped variant of the style; superscripts are only

cramped if the original style was cramped.
• In an {..\over..} formula in any style the numerator and denominator are

taken from the next smaller style.
• The denominator is always in cramped style; the numerator is only in cramped

style if the original style was cramped.
• Formulas under a \sqrt or \overline are in cramped style.
Styles can be forced by the explicit commands \displaystyle, \textstyle, \scriptstyle,
and \scriptscriptstyle.

In display style and text style the \textfont of the current family is used, in script-
style the \scriptfont is used, and in scriptscriptstyle the \scriptscriptfont is
used.

202 Victor Eijkhout – TEX by Topic

23.3. Classes of mathematical objects

The primitive command

\mathchoice{D}{T}{S}{SS}

lets the user specify four variants of a formula for the four styles. TEX constructs all
four and inserts the appropriate one.

23.3 Classes of mathematical objects
Objects in math mode belong to one of eight classes. Depending on the class the ob-
ject may be surrounded by some amount of white space, or treated specially in some
way. Commands exist to force symbols, or sequences of symbols, to act as belon-
ging to a certain class. In the hexadecimal representation "xyzz the class is the 〈3-bit
number〉 x.

This is the list of classes and commands that force those classes. The examples are
from the plain format (see the tables starting at page 303).

1. ordinary: lowercase Greek characters and those symbols that are ‘just sym-
bols’; the command \mathord forces this class.

2. large operator: integral and sum signs, and ‘big’ objects such as \bigcap
or \bigotimes; the command \mathop forces this class. Characters that are
large operators are centred vertically, and they may behave differently in dis-
play style from in the other styles; see below.

3. binary operation: plus and minus, and things such as \cap or \otimes; the
command \mathbin forces this class.

4. relation (also called binary relation): equals, less than, and greater than signs,
subset and superset, perpendicular, parallel; the command \mathrel forces
this class.

5. opening symbol : opening brace, bracket, parenthesis, angle, floor, ceiling; the
command \mathopen forces this class.

6. closing symbol : closing brace, bracket, parenthesis, angle, floor, ceiling; the
command \mathclose forces this class.

7. punctuation: most punctuation marks, but : is a relation, the \colon is a
punctuation colon; the command \mathpunct forces this class.

8. variable family: symbols in this class change font with the \fam parameter; in
plain TEX uppercase Greek letters and ordinary letters and digits are in this
class.

There is one further class: the inner subformulas. No characters can be assigned to
this class, but characters and subformulas can be forced into it by \mathinner. The
〈generalized fraction〉s and \left...\right groups are inner formulas. Inner formu-
las are surrounded by some white space; see the table below.

Other subformulas than those that are inner are treated as ordinary symbols. In par-
ticular, subformulas enclosed in braces are ordinary: $a+b$ looks like ‘a + b’, but
$a{+}b$ looks like ‘a+b’. Note, however, that in ${a+b}$ the whole subformula is
treated as an ordinary symbol, not its components; therefore the result is ‘a + b’.

Victor Eijkhout – TEX by Topic 203

Chapter 23. Mathematics Typesetting

23.4 Large operators and their limits
The large operators in the Computer Modern fonts come in two sizes: one for text
style and one for display style. Control sequences such as \sum are simply defined by
\mathchardef to correspond to a position in a font:

\mathchardef\sum="1350

but if the current style is display style, TEX looks to see whether that character has a
successor in the font.

Large operators in text style behave as if they are followed by \nolimits, which
places the limits as sub/superscript expressions after the operator:∑∞

k=1

In display style they behave as if they are followed by \limits, which places the
limits over and under the operator:

∞∑
k=1

The successor mechanism (see page 192) lets TEX take a larger variant of the delimiter
here.

The integral sign has been defined in plain TEX as

\mathchardef\intop="1352 \def\int{\intop\nolimits}

which places the limits after the operator, even in display style:∫ ∞

0

e−x2
dx =

√
π/2

With \limits\nolimits or \nolimits\limits the last specification has precedence;
the default placement can be restored by \displaylimits. For instance,

$... \sum\limits\displaylimits ... $

is equivalent to

$... \sum ... $

and

$$... \sum\nolimits\displaylimits ... $$

is equivalent to

$$... \sum ... $$

23.5 Vertical centring: \vcenter
Each formula has an axis , which is for an in-line formula about half the x-height of
the surrounding text; the exact value is the \fontdimen22 of the font in family 2, the
symbol font, in the current style.

The bar line in fractions is placed on the axis; large operators, delimiters and \vcenter
boxes are centred on it.

204 Victor Eijkhout – TEX by Topic

23.6. Mathematical spacing: mu glue

A \vcenter box is a vertical box that is arranged so that it is centred on the math
axis. It is possible to give a spread or to specification with a \vcenter box.

The \vcenter box is allowed only in math mode, and it does not behave like other
boxes; for instance, it can not be stored in a box register. It does not qualify as
a 〈box〉. See page 138 for a macro that repairs this.

23.6 Mathematical spacing: mu glue
Spacing around mathematical objects is measured in mu units. A mu is 1/18th part
of \fontdimen6 of the font in family 2 in the current style, the ‘quad’ value of the
symbol font.

23.6.1 Classification of mu glue

The user can specify mu spacing by \mkern or \mskip, but most mu glue is inserted
automatically by TEX, based on the classes to which objects belong (see above). First,
here are some rules of thumb describing the global behaviour.
• A \thickmuskip (default value in plain TEX: 5mu plus 5mu) is inserted

around (binary) relations, except where these are preceded or followed by
other relations or punctuation, and except if they follow an open, or precede
a close symbol.

• A \medmuskip (default value in plain TEX: 4mu plus 2mu minus 4mu) is
put around binary operators.

• A \thinmuskip (default value in plain TEX: 3mu) follows after punctuation,
and is put around inner objects, except where these are followed by a close or
preceded by an open symbol, and except if the other object is a large operator
or a binary relation.

• No mu glue is inserted after an open or before a close symbol except where
the latter is preceded by punctuation; no mu glue is inserted also before punc-
tuation, except where the preceding object is punctuation or an inner object.

The following table gives the complete definition of mu glue between math objects.
0: 1: 2: 3: 4: 5: 6:

Ord Op Bin Rel Open Close Punct Inner
0: Ord 0 1 (2) (3) 0 0 0 (1)
1: Op 1 1 * (3) 0 0 0 (1)
2: Bin (2) (2) * * (2) * * (2)
3: Rel (3) (3) * 0 (2) * * (2)
4: Open 0 0 * 0 0 0 0 0
5: Close 0 1 (2) (3) 0 0 0 (1)
6: Punct (1) (1) * (1) (1) (1) (1) (1)

Inner (1) 1 (2) (3) (1) 0 (1) (1)
where the symbols have the following meanings:
• 0, no space; 1, thin space; 2, medium space; 3, thick space;

Victor Eijkhout – TEX by Topic 205

Chapter 23. Mathematics Typesetting

• (·), insert only in text and display mode, not in script or scriptscript mode;
• cases * cannot occur, because a Bin object is converted to Ord if it is the

first in the list, preceded by Bin, Op, Open, Punct, Rel, or followed by Close,
Punct, and Rel; also, a Rel is converted to Ord when it is followed by Close
or Punct.

Stretchable mu glue is set according to the same rules that govern ordinary glue. Howe-
ver, only mu glue on the outer level can be stretched or shrunk; any mu glue enclosed
in a group is set at natural width.

23.6.2 Muskip registers

Like ordinary glue, mu glue can be stored in registers, the \muskip registers, of which
there are 256 in TEX. The registers are denoted by

\muskip〈8-bit number〉
and they can be assigned to a control sequence by

\muskipdef〈control sequence〉〈equals〉〈8-bit number〉
and there is a macro that allocates unused registers:

\newmuskip〈control sequence〉
Arithmetic for mu glue exists as for glue; see Chapter 8.

23.6.3 Other spaces in math mode

In math mode space tokens are ignored; however, the math code of the space character
is "8000 in plain TEX, so if its category is made ‘letter’ or ‘other character’, it will
behave like an active character in math mode. See also page 191.

Admissible glue in math mode is of type 〈mathematical skip〉, which is either a 〈horizontal
skip〉 (see Chapter 6) or \mskip〈muglue〉. Leaders in math mode can be specified with
a 〈mathematical skip〉.

A glue item preceded by \nonscript is cancelled if it occurs in scriptstyle or script-
scriptstyle.

Control space functions in math mode as it does in horizontal mode.

In-line formulas are surrounded by kerns of size \mathsurround, the so-called ‘math-
on’ and ‘math-off’ items. Line breaking can occur at the front of the math-off kern if
it is followed by glue.

23.7 Generalized fractions
Fraction-like objects can be set with six primitive commands of type 〈generalized
fraction〉. Each of these takes the preceding and the following subformulas and puts
them over one another, if necessary with a fraction bar and with delimiters.

206 Victor Eijkhout – TEX by Topic

23.8. Underlining, overlining

\over is the ordinary fraction; the bar thickness is \fontdimen8 of the extension
font:

$\pi\over2$ gives ‘π
2 ’

\atop is equivalent to a fraction with zero bar thickness:
$\pi\atop2$ gives ‘π

2 ’
\above〈dimen〉 specifies the thickness of the bar line explicitly:

$\pi\above 1pt 2$ gives ‘π
2

’

To each of these three there corresponds a \...withdelims variant that lets the
user specify delimiters for the expression. For example, the most general command,
in terms of which all five others could have been defined, is

\abovewithdelims〈delim1〉〈delim2〉〈dimen〉.
Delimiters in these generalized fractions do not grow with the enclosed expression: in
display mode a delimiter is taken which is at least \fontdimen20 high, otherwise it
has to be at least \fontdimen21 high. These dimensions are taken from the font in
family 2, the symbol font, in the current style.

The control sequences \over, \atop, and \above are primitives, although they could
have been defined as \...withdelims.., that is, with two null delimiters. Because of
these implied surrounding null delimiters, there is a kern of size \nulldelimiterspace
before and after these simple generalized fractions.

23.8 Underlining, overlining
The primitive commands \underline and \overline take a 〈math field〉 argument,
that is, a 〈math symbol〉 or a group, and draw a line under or over it. The result is an
‘Under’ or ‘Over’ atom, which is appended to the current math list. The line thickness
is font dimension 8 of the extension font, which also determines the clearance between
the line and the 〈math field〉.

Various other \over... and \under... commands exist in plain TEX; these are all
macros that use the TEX \halign command.

23.9 Line breaking in math formulas
In-line formulas can be broken after relations and binary operators. The respective pen-
alties are the \relpenalty and the \binoppenalty. However, TEX will only break
after such symbols if they are not enclosed in braces. Other breakpoints can be created
with \allowbreak, which is an abbreviation for \penalty0.

Unlike in horizontal or vertical mode where putting two penalties in a row is equiva-
lent to just placing the smallest one, in math mode a penalty placed at a break point
– that is, after a relation or binary operator – will effectively replace the old penalty
by the new one.

Victor Eijkhout – TEX by Topic 207

Chapter 23. Mathematics Typesetting

23.10 Font dimensions of families 2 and 3
If a font is used in text mode, TEX will look at its first 7 \fontdimen parameters (see
page 54), for instance to control spacing. In math, however, more font dimensions are
needed. TEX will look at the first 22 parameters of the fonts in family 2, and the first
13 of the fonts in family 3, to control various aspects of math typesetting. The next
two subsections have been quoted loosely from [3].

23.10.1 Symbol font attributes

Attributes of the font in family 2 mainly specify the initial vertical positioning of parts
of fractions, subscripts, superscripts, et cetera. The position determined by applying
these attributes may be further modified because of other conditions, for example the
presence of a fraction bar.

One text font dimension, number 6, the quad, determines the size of mu glue; see
above.

Fraction numerator attributes: minimum shift up, from the main baseline, of the base-
line of the numerator of a generalized fraction,

1. num1: for display style,
2. num2: for text style or smaller if a fraction bar is present,
3. num3: for text style or smaller if no fraction bar is present.

Fraction denominator attributes: minimum shift down, from the main baseline, of the
baseline of the denominator of a generalized fraction,

1. denom1: for display style,
2. denom2: for text style or smaller.

Superscript attributes: minimum shift up, from the main baseline, of the baseline of a
superscript,

1. sup1: for display style,
2. sup2: for text style or smaller, non-cramped,
3. sup3: for text style or smaller, cramped.

Subscript attributes: minimum shift down, from the main baseline, of the baseline of
a subscript,

1. sub1: when no superscript is present,
2. sub2: when a superscript is present.

Script adjustment attributes: for use only with non-glyph, that is, composite, objects.

1. sup drop: maximum distance of superscript baseline below top of nucleus
2. sub drop: minimum distance of subscript baseline below bottom of nucleus.

Delimiter span attributes: height plus depth of delimiter enclosing a generalized frac-
tion,

1. delim1: in display style,
2. delim2: in text style or smaller.

A parameter with many uses, the height of the math axis,

208 Victor Eijkhout – TEX by Topic

23.10. Font dimensions of families 2 and 3

1. axis height: the height above the baseline of the fraction bar, and the centre
of large delimiters and most operators and relations. This position is used in
vertical centring operations.

23.10.2 Extension font attributes

Attributes of the font in family 3 mostly specify the way the limits of large operators
are set.

The first parameter, number 8, default rule thickness, serves many purposes. It is the
thickness of the rule used for overlines, underlines, radical extenders (square root), and
fraction bars. Various clearances are also specified in terms of this dimension: between
the fraction bar and the numerator and denominator, between an object and the rule
drawn by an underline, overline, or radical, and between the bottom of superscripts
and top of subscripts.

Minimum clearances around large operators are as follows:
1. big op spacing1: minimum clearance between baseline of upper limit and top

of large operator; see below.
2. big op spacing2: minimum clearance between bottom of large operator and

top of lower limit.
3. big op spacing3: minimum clearance between baseline of upper limit and top

of large operator, taking into account depth of upper limit; see below.
4. big op spacing4: minimum clearance between bottom of large operator and

top of lower limit, taking into account height of lower limit; see below.
5. big op spacing5: clearance above upper limit or below lower limit of a large

operator.
The resulting clearance above an operator is the maximum of parameter 7, and para-
meter 11 minus the depth of the upper limit. The resulting clearance below an operator
is the maximum of parameter 10, and parameter 12 minus the height of the lower li-
mit.

23.10.3 Example: subscript lowering

The location of a subscript depends on whether there is a superscript; for instance
X1 + Y 2

1 = 1
If you would rather have that look like

X1 + Y 2
1 = 1,

it suffices to specify
\fontdimen16\textfont2=3pt \fontdimen17\textfont2=3pt

which makes the subscript drop equal in both cases.

Victor Eijkhout – TEX by Topic 209

Chapter 24

Display Math

Displayed formulas are set on a line of their own, usually somewhere in a para-
graph. This chapter explains how surrounding white space (both above/below and to
the left/right) is calculated.

\abovedisplayskip \belowdisplayskip Glue above/below a display. Plain TEX default: 12pt
plus 3pt minus 9pt

\abovedisplayshortskip \belowdisplayshortskip Glue above/below a display
if the line preceding the display was short. Plain TEX defaults: 0pt plus 3pt
and 7pt plus 3pt minus 4pt respectively.

\predisplaypenalty \postdisplaypenalty Penalty placed in the vertical list above/
below a display. Plain TEX defaults: 10 000 and 0 respectively.

\displayindent Distance by which the box, in which the display is centred, is in-
dented owing to hanging indentation.

\displaywidth Width of the box in which the display is centred.
\predisplaysize Effective width of the line preceding the display.
\everydisplay Token list inserted at the start of a display.
\eqno Place a right equation number in a display formula.
\leqno Place a left equation number in a display formula.

24.1 Displays
TEX starts building a display when it encounters two math shift characters (characters
of category 3, $ in plain TEX) in a row. Another such pair (possibly followed by one
optional space) indicates the end of the display.

Math shift is a 〈horizontal command〉, but displays are only allowed in unrestricted
horizontal mode ($$ is an empty math formula in restricted horizontal mode). Displays
themselves, however, are started in the surrounding (possibly internal) vertical mode in
order to calculate quantities such as \prevgraf; the result of the display is appended
to the vertical list.

210

24.2. Displays in paragraphs

The part of the paragraph above the display is broken into lines as an independent
paragraph (but \prevgraf is carried over; see below), and the remainder of the pa-
ragraph is set, starting with an empty list and \spacefactor equal to 1000. The
\everypar tokens are not inserted for the part of the paragraph after the display, nor
is \parskip glue inserted.

Right at the beginning of the display the \everydisplay token list is inserted (but
after the calculation of \displayindent, \displaywidth, and \predisplaysize).
See page 214 for an example of the use of \everydisplay.

The page builder is exercised before the display (but after the \everydisplay tokens
have been inserted), and after the display finishes.

The ‘display style’ of math typesetting was treated in Chapter 22.

24.2 Displays in paragraphs
Positioning of a display in a paragraph may be influenced by hanging indentation or
a \parshape specification. For this, TEX uses the \prevgraf parameter (see Chap-
ter 18), and acts as if the display is three lines deep.

If n is the value of \prevgraf when the display starts – so there are n lines of text
above the display – \prevgraf is set to to n + 3 when the paragraph resumes. The
display occupies, as it were, lines n + 1, n + 2, and n + 3. The shift and line width
for the display are those that would hold for line n + 2.

The shift for the display is recorded in \displayindent; the line width is recorded
in \displaywidth. These parameters (and the \predisplaysize explained below)
are set immediately after the $$ has been scanned. Usually they are equal to zero and
\hsize respectively. The user can change the values of these parameters; TEX will use
the values that hold after the math list of the display has been processed.

Note that a display is vertical material, and therefore not influenced by settings of
\leftskip and \rightskip.

24.3 Vertical material around displays
A display is preceded in the vertical list by
• a penalty of size \predisplaypenalty (plain TEX default 10 000), and
• glue of size \abovedisplayskip or \abovedisplayshortskip; this glue is

omitted in cases where a \leqno equation number is set on a line of its own
(see below).

A display is followed by
• a penalty of size \postdisplaypenalty (default 0), and possibly
• glue of size \belowdisplayskip or \belowdisplayshortskip; this glue is

omitted in cases where an \eqno equation number is set on a line of its own
(see below).

Victor Eijkhout – TEX by Topic 211

Chapter 24. Display Math

The ‘short’ variants of the glue are taken if there is no \leqno left equation number,
and if the last line of the paragraph above the display is short enough for the display
to be raised a bit without coming too close to that line. In order to decide this, the
effective width of the preceding line is saved in \predisplaysize. This value is
calculated immediately after the opening $$ of the display has been scanned, together
with the \displaywidth and \displayindent explained above.

Remembering that the part of the paragraph above the display has already been broken
into lines, the following method for finding the effective width of the last line ensues.
TEX takes the last box of the list, which is a horizontal box containing the last line,
and locates the right edge of the last box in it. The \predisplaysize is then the
place of that rightmost edge, plus any amount by which the last line was shifted, plus
two ems in the current font.

There are two exceptions to this. The \predisplaysize is taken to be −\maxdimen
if there was no previous line, that is, the display started the paragraph, or it followed
another display; \predisplaysize is taken to be \maxdimen if the glue in the last
line was not set at its natural width, which may happen if the \parfillskip con-
tained only finite stretch. The reason for the last clause is that glue setting is slightly
machinedependent, and such dependences should be kept out of TEX’s global decision
processes.

24.4 Glue setting of the display math list
The display has to fit in \displaywidth, but in addition to the formula there may be
an equation number. The minimum separation between the formula and the equation
number should be one em in the symbol font, that is, \fontdimen6\textfont2.

If the formula plus any equation number and separation fit into \displaywidth, the
glue in the formula is set at its natural width. If it does not fit, but the formula con-
tains enough shrink, it is shrunk. Otherwise TEX puts any equation number on a line
of its own, and the glue in the formula is set to fit it in \displaywidth. With the
equation number on a separate line the formula may now very well fit in the display
width; however, if it was a very long formula the box in which it is set may still be
overfull. TEX nevers breaks a displayed formula.

24.5 Centring the display formula: displacement
Based on the width of the box containing the formula – which may not really ‘contain’
it; it may be overfull – TEX tries to centre the formula in the \displaywidth, that is,
without taking the equation number into account. Initially, a displacement is calculated
that is half the difference between \displaywidth and the width of the formula box.

However, if there is an equation number that will not be put on a separate line and the
displacement is less than twice the width of the equation number, a new displacement

212 Victor Eijkhout – TEX by Topic

24.6. Equation numbers

is calculated. This new displacement is zero if the formula started with glue; otherwise
it is such that the formula box is centred in the space left by the equation number.

If there was no equation number, or if the equation number will be put on a sepa-
rate line, the formula box is now placed, shifted right by \displayindent plus the
displacement calculated above.

24.6 Equation numbers
The user can specify a equation number for a display by ending it with

\eqno〈math mode material〉$$
for an equation number placed on the right, or

\leqno〈math mode material〉$$
for an equation number placed on the left.

24.6.1 Ordinary equation numbers

Above it was described how TEX calculates a displacement from the display formula
and the equation number, if this is to be put on the same line as the formula.

If the equation number was a \leqno number, TEX places a box containing
• the equation number,
• a kern with the size of the displacement calculated, and
• the formula.
This box is shifted right by \displayindent.

If the equation number was an \eqno number, TEX places a box containing
• the formula,
• a kern with the size of the displacement calculated, and
• the equation number.
This box is shifted right by \displayindent plus the displacement calculated.

24.6.2 The equation number on a separate line

Since displayed formulas may become rather big, TEX can decide (as was described
above) that any equation number should be placed on a line of its own. A left-placed
equation number is then to be placed above the display, in a box that is shifted right
by \displayindent; a right-placed equation number will be placed below the display,
in a box that is shifted to the right by \displayindent plus \displaywidth minus
the width of the equation number box.

In both cases a penalty of 10 000 is placed between the equation number box and the
formula.

TEX does not put extra glue above a left-placed equation number or below a right-
placed equation number; TEX here relies on the baselineskip mechanism.

Victor Eijkhout – TEX by Topic 213

Chapter 24. Display Math

24.7 Non-centred displays
As a default, TEX will centre displays. In order to get non-centred displays some ma-
cro trickery is needed.

One approach would be to write a macro \DisplayEquation that would basically
look like
\def\DisplayEquation#1{%

\par \vskip\abovedisplayskip
\hbox{\kern\parindent$\displaystyle#1$}
\vskip\belowdisplayskip \noindent}

but it would be nicer if one could just write
$$... \eqno ... $$

and having this come out as a leftaligning display.

Using the \everydisplay token list, the above idea can be realized. The basic idea
is to write
\everydisplay{\IndentedDisplay}
\def\IndentedDisplay#1$${ ...

so that the macro \IndentedDisplay will receive the formula, including any equation
number. The first step is now to extract an equation number if it is present. This makes
creative use of delimited macro parameters.
\def\ExtractEqNo#1\eqno#2\eqno#3\relax

{\def\Equation{#1}\def\EqNo{#2}}
\def\IndentedDisplay#1$${%

\ExtractEqNo#1\eqno\eqno\relax

Next the equation should be set in the available space \displaywidth:
\hbox to \displaywidth

{\kern\parindent
$\displaystyle\Equation$\hfil\EqNo}$$

}

Note that the macro ends in the closing $$ to balance the opening dollars that cau-
sed insertion of the \everydisplay tokens. This also means that the box containing
the displayed material will automatically be surrounded by \abovedisplayskip and
\belowdisplayskip glue. There is no need to use \displayindent anywhere in
this macro, because TEX itself will shift the display appropriately.

214 Victor Eijkhout – TEX by Topic

Chapter 25

Alignment

TEX provides a general alignment mechanism for making tables.
\halign Horizontal alignment.
\valign Vertical alignment.
\omit Omit the template for one alignment entry.
\span Join two adjacent alignment entries.
\multispan Macro to join a number of adjacent alignment entries.
\tabskip Amount of glue in between columns (rows) of an \halign (\valign).
\noalign Specify vertical (horizontal) material to be placed in between rows (co-

lumns) of an \halign (\valign).
\cr Terminate an alignment line.
\crcr Terminate an alignment line if it has not already been terminated by \cr.
\everycr Token list inserted after every \cr or non-redundant \crcr.
\centering Glue register in plain TEX for centring \eqalign and \eqalignno. Va-

lue: 0pt plus 1000pt minus 1000pt
\hideskip Glue register in plain TEX to make alignment entries invisible. Value:

-1000pt plus 1fill
\hidewidth Macro to make preceding or following entry invisible.

25.1 Introduction
TEX has a sophisticated alignment mechanism, based on templates, with one template
entry per column or row. The templates may contain any common elements of the
table entries, and in general they contain instructions for typesetting the entries. TEX
first calculates widths (for \halign) or heights (for \valign) of all entries; then it
typesets the whole alignment using in each column (row) the maximum width (height)
of entries in that column (row).

25.2 Horizontal and vertical alignment
The two alignment commands in TEX are

215

Chapter 25. Alignment

\halign〈box specification〉{〈alignment material〉}
for horizontal alignment of columns, and

\valign〈box specification〉{〈alignment material〉}
for vertical alignment of rows. \halign is a 〈vertical command〉, and \valign is a
〈horizontal command〉.

The braces induce a new level of grouping; they can be implicit.

The discussion below will mostly focus on horizontal alignments, but, replacing ‘co-
lumn’ by ‘row’ and vice versa, it applies to vertical alignments too.

25.2.1 Horizontal alignments: \halign

Horizontal alignments yield a list of horizontal boxes, the rows, which are placed on
the surrounding vertical list. The page builder is exercised after the alignment rows
have been added to the vertical list. The value of \prevdepth that holds before
the alignment is used for the baselineskip of the first row, and after the alignment
\prevdepth is set to a value based on the last row.

Each entry is processed in a group of its own, in restricted horizontal mode.

A special type of horizontal alignment exists: the display alignments, specified as

$$〈assignments〉\halign〈box specification〉{...}〈assignments〉$$
Such an alignment is shifted by \displayindent (see Chapter 24) and surrounded
by \abovedisplayskip and \belowdisplayskip glue.

25.2.2 Vertical alignments: \valign

Vertical alignments are ‘rotated’ horizontal alignments: they are placed on the surroun-
ding horizontal lists, and yield a row of columns. The \spacefactor value is treated
the same way as the \prevdepth for horizontal alignments: the value current before
the alignment is used for the first column, and the value reached after the last column
is used after the alignment. In between columns the \spacefactor value is 1000.

Each entry is in a group of its own, and it is processed in internal vertical mode.

25.2.3 Material between the lines: \noalign

Material that has to be contained in the alignment, but should not be treated as an
entry or series of entries, can be given by

\noalign〈filler〉{〈vertical mode material〉}
for horizontal alignments, and

\noalign〈filler〉{〈horizontal mode material〉}
for vertical alignments.

Examples are

216 Victor Eijkhout – TEX by Topic

25.3. The preamble

\noalign{\hrule}

for drawing a horizontal rule between two lines of an \halign, and
\noalign{\penalty100}

for discouraging a page break (or line break) in between two rows (columns) of an
\halign (\valign).

25.2.4 Size of the alignment

The 〈box specification〉 can be used to give the alignment a predetermined size: for
instance
\halign to \hsize{ ... }

Glue contained in the entries of the alignment has no role in this; any stretch or shrink
required is taken from the \tabskip glue. This is explained below.

25.3 The preamble
Each line in an alignment is terminated by \cr; the first line is called the template
line. It is of the form

u1#v1&...&un#vn\cr

where each ui, vi is a (possibly empty) arbitrary sequence of tokens, and the template
entries are separated by the alignment tab character (& in plain TEX), that is, any
character of category 4.

A ui#vi sequence is the template that will be used for the i th column: whatever se-
quence αi the user specifies as the entry for that column will be inserted at the para-
meter character. The sequence uiαivi is then processed to obtain the actual entry for
the i th column on the current line. See below for more details.

The length n of the template line need not be equal to the actual number of columns
in the alignment: the template is used only for as many items as are specified on a
line. Consider as an example
\halign{a#&b#&c#\cr 1&2\cr 1\cr}

which has a three-item template, but the rows have only one or two items. The output
of this is

a1b2
a1

25.3.1 Infinite preambles

For the case where the number of columns is not known in advance, for instance if
the alignment is to be used in a macro where the user will specify the columns, it
is possible to specify that a trailing piece of the preamble can be repeated arbitra-
rily many times. By preceding it with &, an entry can be marked as the start of this
repeatable part of the preamble. See the example of \matrix below.

Victor Eijkhout – TEX by Topic 217

Chapter 25. Alignment

When the whole preamble is to be repeated, there will be an alignment tab character
at the start of the first entry:

\halign{& ... & ... \cr ... }

If a starting portion of the preamble is to be exempted from repetition, a double ali-
gnment tab will occur:

\halign{ ... & ... & ... && ... & ... \cr ... }

The repeatable part need not be used an integral number of times. The alignment rows
can end at any time; the rest of the preamble is then not used.

25.3.2 Brace counting in preambles

Alignments may appear inside alignments, so TEX uses the following rule to determine
to which alignment an & or \cr control sequence belongs:

All tab characters and \cr tokens of an alignment should be on the
same level of grouping.

From this it follows that tab characters and \cr tokens can appear inside an entry if
they are nested in braces. This makes it possible to have nested alignments.

25.3.3 Expansion in the preamble

All tokens in the preamble – apart from the tab characters – are stored for insertion
in the entries of the alignment, but a token preceded by \span is expanded while the
preamble is scanned. See below for the function of \span in the rest of the alignment.

25.3.4 \tabskip

Entries in an alignment are set to take the width of the largest element in their co-
lumn. Glue for separating columns can be specified by assigning to \tabskip. TEX
inserts this glue in between each pair of columns, and before the first and after the
last column.

The value of \tabskip that holds outside the alignment is used before the first co-
lumn, and after all subsequent columns, unless the preamble contains assignments to
\tabskip. Any assignment to \tabskip is executed while TEX is scanning the pre-
amble; the value that holds when a tab character is reached will be used at that place
in each row, and after all subsequent columns, unless further assignments occur. The
value of \tabskip that holds when \cr is reached is used after the last column.

Assignments to \tabskip in the preamble are local to the alignment, but not to the
entry where they are given. These assignments are ordinary glue assignments: they
remove any optional trailing space.

As an example, in the following table there is no tabskip glue before the first and
after the last column; in between all columns there is stretchable tabskip.

218 Victor Eijkhout – TEX by Topic

25.4. The alignment

\tabskip=0pt \halign to \hsize{
\vrule#\tabskip=0pt plus 1fil\strut&
\hfil#\hfil& \vrule#& \hfil#\hfil& \vrule#& \hfil#\hfil&
\tabskip=0pt\vrule#\cr

\noalign{\hrule}
&\multispan5\hfil Just a table\hfil&\cr

\noalign{\hrule}
&one&&two&&three&\cr &a&&b&&c&\cr

\noalign{\hrule}
}

The result of this is

Just a table
one two three

a b c

All of the vertical rules of the table are in a separate column. This is the only way to
get the space around the items to stretch.

25.4 The alignment
After the template line any number of lines terminated by \cr can follow. TEX reads
all of these lines, processing the entries in order to find the maximal width (height) in
each column (row). Because all entries are kept in memory, long tables can overflow
TEX’s main memory. For such tables it is better to write a special-purpose macro.

25.4.1 Reading an entry

Entries in an alignment are composed of the constant u and v parts of the template,
and the variable α part. Basically TEX forms the sequence of tokens uαv and pro-
cesses this. However, there are two special cases where TEX has to expand before it
forms this sequence.

Above, the \noalign command was described. Since this requires a different treat-
ment from other alignment entries, TEX expands, after it has read a \cr, the first token
of the first α string of the next line to see whether that is or expands to \noalign.
Similarly, for all entries in a line the first token is expanded to see whether it is or
expands to \omit. This control sequence will be described below.

Entries starting with an \if... conditional, or a macro expanding to one, may be
misinterpreted owing to this premature expansion. For example,

\halign{$#$\cr \ifmmode a\else b\fi\cr}

will give

b

Victor Eijkhout – TEX by Topic 219

Chapter 25. Alignment

because the conditional is evaluated before math mode has been set up. The solution
is, as in many other cases, to insert a \relax control sequence to stop the expansion.
Here the \relax has to be inserted at the start of the alignment entry.

If neither \noalign nor \omit (see below) is found, TEX will process an input stream
composed of the u part, the α tokens (which are delimited by either & or \span, see
below), and the v part.

Entries are delimited by &, \span, or \cr, but only if such a token occurs on the
same level of grouping. This makes it possible to have an alignment as an entry of
another alignment.

25.4.2 Alternate specifications: \omit

The template line will rarely be sufficient to describe all lines of the alignment. For
lines where items should be set differently the command \omit exists: if the first
token in an entry is (or expands to) \omit the trivial template # is used instead of
what the template line specifies.

The following alignment uses the same template for all columns, but
in the second column an \omit command is given.
\tabskip=1em
\halign{&$<#>$\cr a&\omit (b)&c \cr}
The output of this is

< a > (b) < c >

25.4.3 Spanning across multiple columns: \span

Sometimes it is desirable to have material spanning several columns. The most obvious
example is that of a heading above a table. For this TEX provides the \span command.

Entries are delimited either by &, by \cr, or by \span. In the last case TEX will
omit the tabskip glue that would normally follow the entry thus delimited, and it will
typeset the material just read plus the following entry in the joint space available.

As an example,
\tabskip=1em
\halign{&#\cr a&b&c&d\cr a&\hrulefill\span\hrulefill&d\cr}

gives
a b c d
a d

Note that there is no tabskip glue in between the two spanned columns, but there is
tabskip glue before the first column and after the last.

Using the \omit command this same alignment could have been generated as
\halign{&#\cr a&b&c&d\cr a&\hrulefill\span\omit&d\cr}

The \span\omit combination is used in the plain TEX macro \multispan: for in-
stance

220 Victor Eijkhout – TEX by Topic

25.4. The alignment

\multispan4 gives \omit\span\omit\span\omit\span\omit

which spans across three tabs, and removes the templates of four entries. Repeating
the above example once again:

\halign{&#\cr a&b&c&d\cr a&\multispan2\hrulefill&d\cr}

The argument of \multispan is a single token, not a number, so in order to span
more than 9 columns the argument should be enclosed in braces, for instance \multispan{12}.
Furthermore, a space after a single-digit argument will wind up in the output.

For a ‘low budget’ solution to spanning columns plain TEX has the macro \hidewidth,
defined by

\newskip\hideskip \hideskip=-1000pt plus 1fill
\def\hidewidth{\hskip\hideskip}

Putting \hidewidth at the beginning or end of an alignment entry will make its width
zero, with the material in the entry sticking out to the left or right respectively.

25.4.4 Rules in alignments

Horizontal rules inside a horizontal alignment will mostly be across the width of the
alignment. The easiest way to attain this is to use

\noalign{\hrule}

lines inside the alignment. If the alignment is contained in a vertical box, lines above
and below the alignment can be specified with

\vbox{\hrule \halign{...} \hrule}

The most general way to get horizontal lines in an alignment is to use

\multispann\hrulefill

which can be used to underline arbitrary adjacent columns.

Vertical rules in alignments take some more care. Since a horizontal alignment breaks
up into horizontal boxes that will be placed on a vertical list, TEX will insert ba-
selineskip glue in between the rows of the alignment. If vertical rules in adjacent
rows are to abut, it is necessary to prevent baselineskip glue, for instance by the
\offinterlineskip macro.

In order to ensure that rows will still be properly spaced it is then necessary to place
a strut somewhere in the preamble. A strut is an invisible object with a certain height
and depth. Putting that in the preamble guarantees that every line will have at least
that height and depth. In the plain format \strut is defined statically as

\vrule height8.5pt depth3.5pt width0pt

so this must be changed when other fonts or sizes are used.

It is a good idea to use a whole column for a vertical rule, that is, to write

\vrule#&

in the preamble and to leave the corresponding entry in the alignment empty. Omitting
the vertical rule can then be done by specifying \omit, and the size of the rule can

Victor Eijkhout – TEX by Topic 221

Chapter 25. Alignment

be specified explicitly by putting, for instance, height 15pt in the entry instead of
leaving it empty. Of course, tabskip glue will now be specified to the left and right of
the rule, so some extra tabskip assignments may be needed in the preamble.

25.4.5 End of a line: \cr and \crcr

All lines in an alignment are terminated by the \cr control sequence, including the last
line. TEX is not able to infer from a closing brace in the α part that the alignment has
ended, because an unmatched closing brace is perfectly valid in an alignment entry; it
may match an opening brace in the u part of the corresponding preamble entry.

TEX has a primitive command \crcr that is equivalent to \cr, but it has no effect if
it immediately follows a \cr. Consider as an example the definition in plain TEX of
\cases:
\def\cases#1{%

\left\{\,\vcenter{\normalbaselines\m@th
\ialign{ $##\hfil$& \quad##\hfil \crcr #1\crcr}}%

\right.}

Because of the \crcr after the user argument #1, the following two applications of
this macro

\cases{1&2\cr 3&4} and \cases{1&2\cr 3&4\cr}

both work. In the first case the \crcr in the macro definition ends the last line; in
the second case the user’s \cr ends the line, and the \crcr is redundant.

After \cr and after a non-redundant \crcr the 〈token parameter〉 \everycr is inser-
ted. This includes the \cr terminating the template line.

25.5 Example: math alignments
The plain format has several alignment macros that function in math mode. One ex-
ample is \matrix, defined by
\def\matrix#1{\null\,\vcenter{\normalbaselines\m@th

\ialign{\hfil$##$\hfil && \quad\hfil$##$\hfil\crcr
\mathstrut\crcr

\noalign{\kern-\baselineskip}
#1\crcr
\mathstrut\crcr

\noalign{\kern-\baselineskip}}}\,}

This uses a repeating (starting with &&) second preamble entry; each entry is centred
by an \hfil before and after it, and there is a \quad of space in between columns.
Tabskip glue was not used for this, because there should not be any glue preceding or
following the matrix.

The combination of a \mathstrut and \kern-\baselineskip above and below the
matrix increases the vertical size such that two matrices with the same number of

222 Victor Eijkhout – TEX by Topic

25.5. Example: math alignments

rows will have the same height and depth, which would not otherwise be the case
if one of them had subscripts in the last row, but the other not. The \mathstrut
causes interline glue to be inserted and, because it has a size equal to \baselineskip,
the negative kern will effectively leave only the interline glue, thereby buffering any
differences in the first and last line. Only to a certain point, of course: objects bigger
than the opening brace will still result in a different height or depth of the matrix.

Another, more complicated, example of an alignment for math mode is \eqalignno.
\def\eqalignno#1{\begin{disp}l@y \tabskip\centering
\halign to\displaywidth{
\hfil$\@lign\displaystyle{##}$% -- first column

\tabskip\z@skip
&$\@lign\displaystyle{{}##}$\hfil% -- second column

\tabskip\centering
&\llap{$\@lign##$}% -- third column

\tabskip\z@skip\crcr % end of the preamble
#1\crcr}}

Firstly, the tabskip is set to zero after the equation number, so this number is set
flush with the right margin. Since it is placed by \llap, its effective width is zero.
Secondly, the tabskip between the first and second columns is also zero, and the tabs-
kip before the first column and after the second is \centering, which is 0pt plus
1000pt minus 1000pt, so the first column and second are jointly centred in the
\hsize. Note that, because of the minus 1000pt, these two columns will happily
go outside the left and right margins, overwriting any equation numbers.

Victor Eijkhout – TEX by Topic 223

Chapter 26

Page Shape

This chapter treats some of the parameters that determine the size of the page and
how it appears on paper.
\topskip Minimum distance between the top of the page box and the baseline of the

first box on the page. Plain TEX default: 10pt
\hoffset \voffset Distance by which the page is shifted right/down with respect

to the reference point.
\vsize Height of the page box. Plain TEX default: 8.9in
\maxdepth Maximum depth of the page box. Plain TEX default: 4pt
\splitmaxdepth Maximum depth of a box split off by a \vsplit operation. Plain

TEX default: \maxdimen

26.1 The reference point for global positioning
It is a TEX convention, to which output device drivers must adhere, that the top left
point of the page is one inch from the page edges. Unfortunately this may lead to lots
of trouble, for instance if a printer (or the page description language it uses) takes,
say, the lower left corner as the reference point, and is factory set to US paper sizes,
but is used with European standard A4 paper.

The page is shifted on the paper if one assigns non-zero values to \hoffset or
\voffset: positive values shift to the right and down respectively.

26.2 \topskip

The \topskip ensures to a certain point that the first baseline of a page will be at
the same location from page to page, even if font sizes are switched between pages or
if the first line has no ascenders.

Before the first box on each page some glue is inserted. This glue has the same stretch
and shrink as \topskip, but the natural size is the natural size of \topskip minus
the height of the first box, or zero if this would be negative.

224

26.3. Page height and depth

Plain TEX sets \topskip to 10pt. Thus the top lines of pages will have their baselines
at the same place if the top portion of the characters is ten point or less. For the
Computer Modern fonts this condition is satisfied if the font size is less than (about)
13 points; for larger fonts the baseline of the top line will drop.

The height of the page box for a page containing only text (and assuming a zero
\parskip) will be the \topskip plus a number of times the \baselineskip. Thus
one can define a macro to compute the \vsize from the number of lines on a page:
\def\HeightInLines#1{\count@=#1\relax

\advance\count@ by -1\relax
\vsize=\baselineskip
\multiply\vsize by \count@
\advance\vsize by \topskip}

Calculating the \vsize this way will prevent underfull boxes for text-only pages.

In cases where the page does not start with a line of text (for instance a rule), the
topskip may give unwanted effects. To prevent these, start the page with
\hbox{}\kern-\topskip

followed by what you wanted on top.

Analogous to the \topskip, there is a \splittopskip for pages generated by a
\vsplit operation; see the next chapter.

26.3 Page height and depth
TEX tries to build pages as a \vbox of height \vsize; see also \pagegoal in the
next chapter.

If the last item on a page has an excessive depth, that page would be noticeably longer
than other pages. To prevent this phenomenon TEX uses \maxdepth as the maximum
depth of the page box. If adding an item to the page would make the depth exceed
this quantity, then the reference point of the page is moved down to make the depth
exactly \maxdepth.

The ‘raggedbottom’ effect is obtained in plain TEX by giving the \topskip some
finite stretchability: 10pt plus 60pt. Thus the natural height of box 255 can vary
when it reaches the output routine. Pages are then shipped out (more or less) as
\dimen0=\dp255 \unvbox255
\ifraggedbottom \kern-\dimen0 \vfil \fi

The \vfil causes the topskip to be set at natural width, so the effect is one of a fixed
top line and a variable bottom line of the page.

Before \box255 is unboxed in the plain TEX output routine, \boxmaxdepth is set
to \maxdepth so that this box will made under the same assumptions that the page
builder used when putting together \box255.

The depth of box split off by a \vsplit operation is controlled by the \splitmaxdepth
parameter.

Victor Eijkhout – TEX by Topic 225

Chapter 27

Page Breaking

This chapter treats the ‘page builder’: the part of TEX that decides where to break the
main vertical list into pages. The page builder operates before the output routine, and
it hands its result in \box255 to the output routine.

\vsplit Split of a top part of a box. This is comparable with page breaking.
\splittopskip Minimum distance between the top of what remains after a \vsplit

operation, and the first item in that box. Plain TEX default: 10pt
\pagegoal Goal height of the page box. This starts at \vsize, and is diminished by

heights of insertion items.
\pagetotal Accumulated natural height of the current page.
\pagedepth Depth of the current page.
\pagestretch Accumulated zeroth-order stretch of the current page.
\pagefilstretch Accumulated first-order stretch of the current page.
\pagefillstretch Accumulated second-order stretch of the current page.
\pagefilllstretch Accumulated third-order stretch of the current page.
\pageshrink Accumulated shrink of the current page.
\outputpenalty Value of the penalty at the current page break, or 10 000 if the

break was not at a penalty.
\interlinepenalty Penalty for breaking a page between lines of a paragraph. Plain

TEX default: 0
\clubpenalty Additional penalty for breaking a page after the first line of a para-

graph. Plain TEX default: 150
\widowpenalty Additional penalty for breaking a page before the last line of a pa-

ragraph. Plain TEX default: 150
\displaywidowpenalty Additional penalty for breaking a page before the last line

above a display formula. Plain TEX default: 50
\brokenpenalty Additional penalty for breaking a page after a hyphenated line. Plain

TEX default: 100
\penalty Place a penalty on the current list.
\lastpenalty If the last item on the list was a penalty, the value of this.
\unpenalty Remove the last item of the current list if this was a penalty.

226

27.1. The current page and the recent contributions

27.1 The current page and the recent contributions
The main vertical list of TEX is divided in two parts: the ‘current page’ and the list of
‘recent contributions’. Any material that is added to the main vertical list is appended
to the recent contributions; the act of moving the recent contributions to the current
page is known as ‘exercising the page builder’.

Every time something is moved to the current page, TEX computes the cost of breaking
the page at that point. If it decides that it is past the optimal point, the current page
up to the best break so far is put in \box255 and the remainder of the current page
is moved back on top of the recent contributions. If the page is broken at a penalty,
that value is recorded in \outputpenalty, and a penalty of size 10 000 is placed on
top of the recent contributions; otherwise, \outputpenalty is set to 10 000.

If the current page is empty, discardable items that are moved from the recent con-
tributions are discarded. This is the mechanism that lets glue disappear after a page
break and at the top of the first page. When the first non-discardable item is moved
to the current page, the \topskip glue is inserted; see the previous chapter.

The workings of the page builder can be made visible by setting \tracingpages to
some positive value (see Chapter 34).

27.2 Activating the page builder
The page builder comes into play in the following circumstances.
• Around paragraphs: after the \everypar tokens have been inserted, and after

the paragraph has been added to the vertical list. See the end of this chapter
for an example.

• Around display formulas: after the \everydisplay tokens have been inserted,
and after the display has been added to the list.

• After \par commands, boxes, insertions, and explicit penalties in vertical mode.
• After an output routine has ended.
In these places the page builder moves the recent contributions to the current page.
Note that TEX need not be in vertical mode when the page builder is exercised. In
horizontal mode, activating the page builder serves to move preceding vertical glue
(for example, \parskip, \abovedisplayskip) to the page.

The \end command – which is only allowed in external vertical mode – terminates a
TEX job, but only if the main vertical list is empty and \deadcycles = 0. If this is
not the case the combination

\hbox{}\vfill\penalty−230

is appended, which forces the output routine to act.

27.3 Page length bookkeeping
The height and depth of the page box that reaches the output routine are determined by
\vsize, \topskip, and \maxdepth as described in the previous chapter. TEX places

Victor Eijkhout – TEX by Topic 227

Chapter 27. Page Breaking

the \topskip glue when the first box is placed on the current page; the \vsize
and \maxdepth are read when the first box or insertion occurs on the page. Any
subsequent changes to these parameters will not be noticeable until the next page or,
more strictly, until after the output routine has been called.

After the first box, rule, or insertion on the current page the \vsize is recorded in
\pagegoal, and its value is not looked at until \output has been active. Changing
\pagegoal does have an effect on the current page. When the page is empty, the
pagegoal is \maxdimen, and \pagetotal is zero.

Accumulated dimensions and stretch are available in the parameters \pagetotal, \pagedepth,
\pagestretch, \pagefilstretch, \pagefillstretch, \pageshrink, and \pagefilllstretch.
They are set by the page builder. The stretch and shrink parameters are updated every
time glue is added to the page. The depth parameter becomes zero if the last item was
kern or glue.

These parameters are 〈special dimen〉s; an assignment to any of them is an 〈intimate
assignment〉, and it is automatically global.

27.4 Breakpoints
27.4.1 Possible breakpoints

Page breaks can occur at the same kind of locations where line breaks can occur:

• at glue that is preceded by a non-discardable item;
• at a kern that is immediately followed by glue;
• at a penalty.

TEX inserts interline glue and various sorts of interline penalties when the lines of a
paragraph are added to the vertical list, so there will usually be sufficient breakpoints
on the page.

27.4.2 Breakpoint penalties

If TEX decides to break a page at a penalty item, this penalty will, most of the time,
be one that has been inserted automatically between the lines of a paragraph.

If the last item on a list (not necessarily a vertical list) is a penalty, the value of
this is recorded in the parameter \lastpenalty. If the item is other than a penalty,
this parameter has the value zero. The last penalty of a list can be removed with the
command \unpenalty. See Section 5.9.6 for an example.

Here is a list of such penalties:

\interlinepenalty Penalty for breaking a page between lines of a paragraph. In
plain TEX this is zero, so no penalty is added in between lines. TEX can then
find a valid breakpoint at the \baselineskip glue.

228 Victor Eijkhout – TEX by Topic

27.4. Breakpoints

\clubpenalty Extra penalty for breaking a page after the first line of a paragraph.
In plain TEX this is 150. This amount, and the following penalties, are ad-
ded to the \interlinepenalty, and a penalty of the resulting size is in-
serted after the \hbox containing the first line of a paragraph instead of the
\interlinepenalty.

\widowpenalty Extra penalty for breaking a page before the last line of a paragraph.
In plain TEX this is 150.

\displaywidowpenalty Extra penalty for breaking a page before the last line above
a display formula. The default value in plain TEX is 50.

\brokenpenalty Extra penalty for breaking a page after a hyphenated line. The default
value in plain TEX is 100.

If the resulting penalty is zero, it is not placed.

Penalties can also be inserted by the user. For instance, the plain format has macros
to encourage (possibly, force) or prohibit page breaks:

\def\break{\penalty-10000 } % force break
\def\nobreak{\penalty10000 } % prohibit break
\def\goodbreak{\par\penalty-500 } % encourage page break

Also, \vadjust{\penalty ... } is a way of getting penalties in the vertical list.
This can be used to discourage or encourage page breaking after a certain line of a
paragraph.

27.4.3 Breakpoint computation

Whenever an item is moved to the current page,
TEX computes the penalty p and the badness b

underfull page
b = 10 000

feasible breakpoints
b < 10 000

overfull page
b =∞
.
.
.

associated with breaking the page at that place.
From the penalty and the badness the cost c of
breaking is computed.

The place of least cost is remembered, and when
the cost is infinite, that is, the page is overfull,
or when the penalty is p ≤ −10 000, the current
page is broken at the (last remembered) place
of least cost. The broken-off piece is then put
in \box255 and the output routine token list is
inserted. Box 255 is always given a height of
\vsize, regardless of how much material it has.

The badness calculation is based on the amount
of stretching or shrinking that is necessary to fit
the page in a box with height \vsize and ma-
ximum depth \maxdepth. This calculation is the
same as for line breaking (see Chapter 8). Bad-
ness is a value 0 ≤ b ≤ 10 000, except when
pages are overfull; then b =∞.

Victor Eijkhout – TEX by Topic 229

Chapter 27. Page Breaking

Some penalties are implicitly inserted by TEX, for instance the \interlinepenalty
which is put in between every pair of lines of a paragraph. Other penalties can be
explicitly inserted by the user or a user macro. A penalty value p ≥ 10 000 inhibits
breaking; a penalty p ≤ −10 000 (in external vertical mode) forces a page break, and
immediately activates the output routine.

Cost calculation proceeds as follows:

1. When a penalty is so low that it forces a page break and immediate invocation
of the output routine, but the page is not overfull, that is

b <∞ and p ≤ −10 000
the cost is equal to the penalty: c = p.

2. When penalties do not force anything, and the page is not overfull, that is
b <∞ and |p| < 10 000

the cost is c = b + p.
3. For pages that are very bad, that is

b = 10 000 and |p| < 10 000
the cost is c = 10 000.

4. An overfull page, that is
b =∞ and p < 10 000

gives infinite cost: c = ∞. In this case TEX decides that the optimal break
point must have occurred earlier, and it invokes the output routine. Values
of \insertpenalties (see Chapter 29) that exceed 10 000 also give infinite
cost.

The fact that a penalty p ≤ −10 000 activates the output routine is used extensively
in the LATEX output routine: the excess |p| − 10 000 is a code indicating the reason for
calling the output routine; see also the second example in the next chapter.

27.5 \vsplit

The page-breaking operation is available to the user through the \vsplit operation.

\setbox1 = \vsplit2 to \dimen3
assigns to box 1 the top part of size \dimen3 of box 2. This material
is actually removed from box 2. Compare this with splitting off a
chunk of size \vsize from the current page.

The extracted result of

\vsplit〈8-bit number〉to〈dimen〉
is a box with the following properties.

• Height equal to the specified 〈dimen〉; TEX will go through the original box
register (which must contain a vertical box) to find the best breakpoint. This
may result in an underfull box.

• Depth at most \splitmaxdepth; this is analogous to the \maxdepth for the
page box, rather than the \boxmaxdepth that holds for any box.

• A first and last mark in the \splitfirstmark and \splitbotmark registers.

230 Victor Eijkhout – TEX by Topic

27.6. Examples of page breaking

The remainder of the \vsplit operation is a box where

• all discardables have been removed from the top;
• glue of size \splittopskip has been inserted on top; if the box being split

was box 255, it already had \topskip glue on top;
• its depth has been forced to be at most \splitmaxdepth.

The bottom of the original box is always a valid breakpoint for the \vsplit operation.
If this breakpoint is taken, the remainder box register is void. The extracted box can
be empty; it is only void if the original box was void, or not a vertical box.

Typically, the \vsplit operation is used to split off part of \box255. By setting
\splitmaxdepth equal to \boxmaxdepth the result is something that could have
been made by TEX’s page builder. After pruning the top of \box255, the mark re-
gisters \firstmark and \botmark contain the first and last marks on the remainder
of box 255. See the next chapter for more information on marks.

27.6 Examples of page breaking
27.6.1 Filling up a page

Suppose a certain vertical box is too large to fit on the remainder of the page. Then

\vfil\vbox{ ... }

is the wrong way to fill up the page and push the box to the next. TEX can only break
at the start of the glue, and the \vfil is discarded after the break: the result is an
underfull, or at least horribly stretched, page. On the other hand,

\vfil\penalty0 % or any other value
\vbox{ ... }

is the correct way: TEX will break at the penalty, and the page will be filled.

27.6.2 Determining the breakpoint

In the following examples the \vsplit operation is used, which has the same mecha-
nism as page breaking.

Let the macros and parameter settings

\offinterlineskip \showboxdepth=1
\def\High{\hbox{\vrule height5pt}}
\def\HighAndDeep{\hbox{\vrule height2.5pt depth2.5pt}}

be given.

First let us consider an example where a vertical list is simply stretched in order to
reach a break point.

\splitmaxdepth=4pt
\setbox1=\vbox{\High \vfil \HighAndDeep}
\setbox2=\vsplit1 to 9pt

Victor Eijkhout – TEX by Topic 231

Chapter 27. Page Breaking

gives

> \box2=
\vbox(9.0+2.5)x0.4, glue set 1.5fil
.\hbox(5.0+0.0)x0.4 []
.\glue 0.0 plus 1.0fil
.\glue(\lineskip) 0.0
.\hbox(2.5+2.5)x0.4 []

The two boxes together have a height of 7.5pt, so the glue has to stretch 1.5pt.

Next, we decrease the allowed depth of the resulting list.

\splitmaxdepth=2pt
\setbox1=\vbox{\High \vfil \HighAndDeep}
\setbox2=\vsplit1 to 9pt

gives

> \box2=
\vbox(9.0+2.0)x0.4, glue set 1.0fil
.\hbox(5.0+0.0)x0.4 []
.\glue 0.0 plus 1.0fil
.\glue(\lineskip) 0.0
.\hbox(2.5+2.5)x0.4 []

The reference point is moved down half a point, and the stretch is correspondingly
diminished, but this motion cannot lead to a larger dimension than was specified.

As an example of this, consider the sequence

\splitmaxdepth=3pt
\setbox1=\vbox{\High \kern1.5pt \HighAndDeep}
\setbox2=\vsplit1 to 9pt

This gives a box exactly 9 points high and 2.5 points deep. Setting \splitmaxdepth=2pt
does not increase the height by half a point; instead, an underfull box results because
an earlier break is taken.

Sometimes the timing of actions is important. TEX first locates a breakpoint that will
lead to the requested height, then checks whether accommodating the \maxdepth or
\splitmaxdepth will not violate that height.

Consider an example of this timing: in

\splitmaxdepth=4pt
\setbox1=\vbox{\High \vfil \HighAndDeep}
\setbox2=\vsplit1 to 7pt

the result is not a box of 7 points high and 3 points deep. Instead,

> \box2=
\vbox(7.0+0.0)x0.4
.\hbox(5.0+0.0)x0.4 []

which is an underfull box.

232 Victor Eijkhout – TEX by Topic

27.6. Examples of page breaking

27.6.3 The page builder after a paragraph

After a paragraph, the page builder moves material to the current page, but it does not
decide whether a breakpoint has been found yet.

\output{\interrupt \plainoutput}% show when you’re active
\def\nl{\hfil\break}\vsize=22pt % make pages of two lines
a\nl b\nl c\par \showlists % make a 3-line paragraph
will report
current page:
[...]
total height 34.0
goal height 22.0
prevdepth 0.0, prevgraf 3 lines
Even though more than enough material has been gathered, \output
is only invoked when the next paragraph starts: typing a d gives
! Undefined control sequence.
<output> {\interrupt

\plainoutput }
<to be read again>

d
when \output is inserted after \everypar.

Victor Eijkhout – TEX by Topic 233

Chapter 28

Output Routines

The final stages of page processing are performed by the output routine. The page
builder cuts off a certain portion of the main vertical list and hands it to the output
routine in \box255. This chapter treats the commands and parameters that pertain to
the output routine, and it explains how output routines can receive information through
marks.

\output Token list with instructions for shipping out pages.
\shipout Ship a box to the dvi file.
\mark Specify a mark text.
\topmark The last mark on the previous page.
\botmark The last mark on the current page.
\firstmark The first mark on the current page.
\splitbotmark The last mark on a split-off page.
\splitfirstmark The first mark on a split-off page.
\deadcycles Counter that keeps track of how many times the output routine has

been called without a \shipout taking place.
\maxdeadcycles The maximum number of times that the output routine is allowed

to be called without a \shipout occurring.
\outputpenalty Value of the penalty at the current page break, or 10 000 if the

break was not at a penalty.

28.1 The \output token list
Common parlance has it that ‘the output routine is called’ when TEX has found a
place to break the main vertical list. Actually, \output is not a macro but a token list
that is inserted into TEX’s command stream.

Insertion of the \output token list happens inside a group that is implicitly opened.
Also, TEX enters internal vertical mode. Because of the group, non-local assignments
(to the page number, for instance) have to be prefixed with \global. The vertical
mode implies that during the workings of the output routine spaces are mostly harm-
less.

234

28.2. Output and \box255

The \output token list belongs to the class of the 〈token parameter〉s. These behave
the same as \toksnnn token lists; see Chapter 14. Assigning an output routine can
therefore take the following forms:

\output〈equals〉〈general text〉 or \output〈equals〉〈filler〉〈token variable〉

28.2 Output and \box255

TEX’s page builder breaks the current page at the optimal point, and stores everything
above that in \box255; then, the \output tokens are inserted into the input stream.
Any remaining material on the main vertical list is pushed back to the recent contri-
butions. If the page is broken at a penalty, that value is recorded in \outputpenalty,
and a penalty of size 10 000 is placed on top of the recent contributions; otherwise,
\outputpenalty is set to 10 000. When the output routine is finished, \box255 is
supposed to be empty. If it is not, TEX gives an error message.

Usually, the output routine will take the pagebox, append a headline and/or footline,
maybe merge in some insertions such as footnotes, and ship the page to the dvi file:

\output={\setbox255=\vbox
{\someheadline
\vbox to \vsize{\unvbox255 \unvbox\footins}
\somefootline}

\shipout\box255}

When box 255 reaches the output routine, its height has been set to \vsize. However,
the material in it can have considerably smaller height. Thus, the above output routine
may lead to underfull boxes. This can be remedied with a \vfil.

The output routine is under no obligation to do anything useful with \box255; it can
empty it, or unbox it to let TEX have another go at finding a page break. The number
of times that the output routing postpones the \shipout is recorded in \deadcycles:
this parameter is set to 0 by \shipout, and increased by 1 just before every \output.

When the number of dead cycles reaches \maxdeadcycles, TEX gives an error mes-
sage, and performs the default output routine

\shipout\box255

instead of the routine it was about to start. The LATEX format has a much higher value
for \maxdeadcycles than plain TEX, because the output routine in LATEX is often
called for intermediate handling of floats and marginal notes.

The \shipout command can send any 〈box〉 to the dvi file; this need not be box
255, or even a box containing the current page. It does not have to be called inside
the output routine, either.

If the output routine produces any material, for instance by calling

\unvbox255

Victor Eijkhout – TEX by Topic 235

Chapter 28. Output Routines

this is put on top of the recent contributions.

After the output routine finishes, the page builder is activated. In particular, because
the current page has been emptied, the \vsize is read again. Changes made to this
parameter inside the output routine (using \global) will therefore take effect.

28.3 Marks
Information can be passed to the output routine through the mechanism of ‘marks’.
The user can specify a token list with

\mark{〈mark text〉}
which is put in a mark item on the current vertical list. The mark text is subject to
expansion as in \edef.

If the mark is given in horizontal mode it migrates to the surrounding vertical lists
like an insertion item (see page 76); however, if this is not the external vertical list,
the output routine will not find the mark.

Marks are the main mechanism through which the output routine can obtain infor-
mation about the contents of the currently broken-off page, in particular its top and
bottom. TEX sets three variables:

\botmark the last mark occurring on the current page;
\firstmark the first mark occurring on the current page;
\topmark the last mark of the previous page, that is, the value of \botmark on the

previous page.

If no marks have occurred yet, all three are empty; if no marks occurred on the current
page, all three mark variables are equal to the \botmark of the previous page.

For boxes generated by a \vsplit command (see previous chapter), the \splitbotmark
and \splitfirstmark contain the marks of the split-off part; \firstmark and \botmark
reflect the state of what remains in the register.

Marks can be used to get a section heading into the headline or foot-
line of the page.
\def\section#1{ ... \mark{#1} ... }
\def\rightheadline{\hbox to \hsize

{\headlinefont \botmark\hfil\pagenumber}}
\def\leftheadline{\hbox to \hsize

{\headlinefont \pagenumber\hfil\firstmark}}
This places the title of the first section that starts on a left page in
the left headline, and the title of the last section that starts on the
right page in the right headline. Placing the headlines on the page is
the job of the output routine; see below.
It is important that no page breaks can occur in between the mark
and the box that places the title:

236 Victor Eijkhout – TEX by Topic

28.4. Assorted remarks

\def\section#1{ ...
\penalty\beforesectionpenalty
\mark{#1}
\hbox{ ... #1 ...}
\nobreak
\vskip\aftersectionskip
\noindent}

Let us consider another example with headlines: often a page looks better if the head-
line is omitted on pages where a chapter starts. This can be implemented as follows:
\def\endofchapter
\chapter#1{ ... \def\chtitle{#1}\mark{1}\mark{0} ... }
\def\theheadline{\expandafter\ifx\firstmark1

\else \chapheadline \fi}

Only on the page where a chapter starts will the mark be 1, and on all other pages a
headline is placed.

28.4 Assorted remarks
28.4.1 Hazards in non-trivial output routines

If the final call to the output routine does not perform a \shipout, TEX will call the
output routine endlessly, since a run will only stop if both the vertical list is empty,
and \deadcycles is zero. The output routine can set \deadcycles to zero to prevent
this.

28.4.2 Page numbering

The page number is not an intrinsic property of the output routine; in plain TEX it
is the value of \count0. The output routine is responsible for increasing the page
number when a shipout of a page occurs.

Apart from \count0, counter registers 1–9 are also used for page identification: at
shipout TEX writes the values of these ten counters to the dvi file (see Chapter 33).
Terminal and log file output display only the non-zero counters, and the zero counters
for which a non-zero counter with a higher number exists, that is, if \count0 =
1 and \count3 = 5 are the only non-zero counters, the displayed list of counters
is [1.0.0.5].

28.4.3 Headlines and footlines in plain TEX

Plain TEX has token lists \headline and \footline; these are used in the macros
\makeheadline and \makefootline. The page is shipped out as (more or less)
\vbox{\makeheadline\pagebody\makefootline}

Both headline and footline are inserted inside a \line. For non-standard headers and
footers it is easier to redefine the macros \makeheadline and \makefootline than
to tinker with the token lists.

Victor Eijkhout – TEX by Topic 237

Chapter 28. Output Routines

28.4.4 Example: no widow lines

Suppose that one does not want to allow widow lines, but pages have in general no
stretch or shrink, for instance because they only contain plain text. A solution would
be to increase the page length by one line if a page turns out to be broken at a widow
line.

TEX’s output routine can perform this sort of trick: if the \widowpenalty is set to
some recognizable value, the output routine can see by the \outputpenalty if a
widow line occurred. In that case, the output routine can temporarily increase the
\vsize, and let the page builder have another go at finding a break point.

Here is the skeleton of such an output routine. No headers or footers are provided for.
\newif\ifLargePage \widowpenalty=147
\newdimen\oldvsize \oldvsize=\vsize
\output={

\ifLargePage \shipout\box255
\global\LargePagefalse
\global\vsize=\oldvsize

\else \ifnum \outputpenalty=\widowpenalty
\global\LargePagetrue
\global\advance\vsize\baselineskip
\unvbox255 \penalty\outputpenalty

\else \shipout\box255
\fi \fi}

The test \ifLargePage is set to true by the output routine if the \outputpenalty
equals the \widowpenalty. The page box is then \unvbox ed, so that the page builder
will tackle the same material once more.

28.4.5 Example: no indentation top of page

Some output routines can be classified as abuse of the output routine mechanism. The
output routine in this section is a good example of this.

It is imaginable that one wishes paragraphs not to indent if they start at the top of a
page. (There are plenty of objections to this layout, but occasionally it is used.) This
problem can be solved using the output routine to investigate whether the page is still
empty and, if so, to give a signal that a paragraph should not indent.

Note that we cannot use the fact here that the page builder comes into play after the
insertion of \everypar: even if we could force the output routine to be activated here,
there is no way for it to remove the indentation box.

The solution given here lets the \everypar terminate the paragraph immediately with
\par\penalty-\specialpenalty

which activates the output routine. Seeing whether the pagebox is empty (after remo-
ving the empty line and any \parskip glue), the output routine then can set a switch
signalling whether the retry of the paragraph should indent.

238 Victor Eijkhout – TEX by Topic

28.4. Assorted remarks

There are some minor matters in the following routines, the sense of which is left for
the reader to ponder.
\mathchardef\specialpenalty=10001
\newif\ifPreventSwitch
\newbox\testbox
\topskip=10pt

\everypar{\begingroup \par
\penalty-\specialpenalty
\everypar{\endgroup}\parskip0pt
\ifPreventSwitch \noindent \else \indent \fi
\global\PreventSwitchfalse
}

\output{
\ifnum\outputpenalty=-\specialpenalty

\setbox\testbox\vbox{\unvbox255
{\setbox0=\lastbox}\unskip}

\ifdim\ht\testbox=0pt \global\PreventSwitchtrue
\else \topskip=0pt \unvbox\testbox \fi

\else \shipout\box255 \global\advance\pageno1 \fi}

28.4.6 More examples of output routines

A large number of examples of output routines can be found in [38] and [39].

Victor Eijkhout – TEX by Topic 239

Chapter 29

Insertions

Insertions are TEX’s way of handling floating information. TEX’s page builder calcula-
tes what insertions and how many of them will fit on the page; these insertion items
are then placed in insertion boxes which are to be handled by the output routine.

\insert Start an insertion item.
\newinsert Allocate a new insertion class.
\insertpenalties Total of penalties for split insertions. Inside the output routine,

the number of held-over insertions.
\floatingpenalty Penalty added when an insertion is split.
\holdinginserts (TEX3 only) If this is positive, insertions are not placed in their

boxes at output time.
\footins Number of the footnote insertion class in plain TEX.
\topins Number of the top insertion class.
\topinsert Plain TEX macro to start a top insert.
\pageinsert Plain TEX macro to start an insert that will take up a whole page.
\midinsert Plain TEX macro that places its argument if there is space, and converts

it into a top insert otherwise.
\endinsert Plain TEX macro to wind up an insertion item that started with \topinsert,

\midinsert, or \pageinsert.

29.1 Insertion items
Insertions contain floating information. Handling insertions is a strange interplay bet-
ween the user, TEX’s internal workings, and the output routine. First the user specifies
an insertion, which is a certain amount of vertical material; then TEX’s page builder
decides what insertions should go on the current page and puts these insertions in
insertion boxes; finally, the output routine has to do something with these boxes.

An insertion item looks like

\insert〈8-bit number〉{〈vertical mode material〉}

240

29.2. Insertion class declaration

where the 8-bit number should not be 255, because \box255 is used by TEX for
passing the page to the output routine.

The braces around the vertical mode material in an insertion item can be implicit; they
imply a new level of grouping. The vertical mode material is processed in internal
vertical mode.

Values of \splittopskip, \splitmaxdepth, and \floatingpenalty are relevant
for split insertions (see below); the values that are current just before the end of the
group are used.

Insertion items can appear in vertical mode, horizontal mode, and math mode. For the
latter two modes they have to migrate to the surrounding vertical list (see page 76).
After an insertion item is put on the vertical list the page builder is exercised.

29.2 Insertion class declaration
In the plain format the number for a new insertion class is allocated by \newinsert:

\newinsert\myinsert % new insertion class

which uses \chardef to assign a number to the control sequence.

Insertion classes are allocated numbering from 254 downward. As box 255 is used for
output, this allocation scheme leaves \skip255, \dimen255, and \count255 free for
scratch use.

29.3 Insertion parameters
For each insertion class n four registers are allocated:

• \boxn When the output routine is active this box contains the insertion items
of class n that should be placed on the current page.

• \dimenn This is the maximum space allotted for insertions of class n per
page. If this amount would be exceeded TEX will split insertions.

• \skipn Glue of this size is added the first time an insertion item of class n
is added to the current page. This is useful for such phenomena as a rule
separating the footnotes from the text of the page.

• \countn Each insertion item is a vertical list, so it has a certain height.
However, the effective height, the amount of influence it has on the text height
of the page, may differ from this real height. The value of \countn is then
1000 times the factor by which the height should be multiplied to obtain the
effective height.
Consider the following examples:
– Marginal notes do not affect the text height, so the factor should be 0.
– Footnotes set in double column mode affect the page by half of their

height: the count value should by 500.

Victor Eijkhout – TEX by Topic 241

Chapter 29. Insertions

– Conversely, footnotes set at page width underneath a page in double co-
lumn mode affect both columns, so – provided that the double column
mode is implemented by applying \vsplit to a double-height column –
the count value should be 2000.

29.4 Moving insertion items from the contributions list
The most complicated issue with insertions is the algorithm that adds insertion items
to the main vertical list, and calculates breakpoints if necessary.

TEX never changes the \vsize, but it diminishes the \pagegoal by the (effective)
heights of the insertion items that will appear before a page break. Thus the output
routine will receive a \box255 that has height \pagegoal, not necessarily \vsize.

1. When the first insertion of a certain class n occurs on the current page TEX
has to account for the quantity \skipn. This step is executed only if no
earlier insertion item of this class occurs on the vertical list – this includes
insertions that were split – but \boxn need not be empty at this time.
If \boxn is not empty, its height plus depth is multiplied by \countn/1000
and the result is subtracted from \pagegoal. Then the \pagegoal is diminis-
hed by the natural component of \skipn. Any stretch and shrink of \skipn
are incorporated in \pagestretch and \pageshrink respectively.

2. If there is a split insertion of class n on the page – this case and the previous
step in the algorithm are mutually exclusive – the \floatingpenalty is ad-
ded to \insertpenalties. A split insertion is an insertion item for which a
breakpoint has been calculated as it will not fit on the current page in its en-
tirety. Thus the insertion currently under consideration will certainly not wind
up on the current page.

3. After the preliminary action of the two previous points TEX will place the
actual insertion item on the main vertical list, at the end of the current con-
tributions. First it will check whether the item will fit without being split.
There are two conditions to be checked:
• adding the insertion item (plus all previous insertions of that class) to

\boxn should not let the height plus depth of that box exceed \dimenn,
and

• either the effective height of the insertion is negative, or \pagetotal
plus \pagedepth minus \pageshrink plus the effective size of the in-
sertion should be less than \pagegoal.

If these conditions are satisfied, \pagegoal is diminished by the effective
size of the insertion item, that is, by the height plus depth, multiplied by
\countn/1000.

4. Insertions that fail on one of the two conditions in the previous step of the
algorithm will be considered for splitting. TEX will calculate the size of the
maximal portion to be split off the insertion item, such that
(a) adding this portion together with earlier insertions of this class to \boxn

will not let the size of the box exceed \dimenn, and

242 Victor Eijkhout – TEX by Topic

29.5. Insertions in the output routine

(b) the effective size of this portion, added to \pagetotal plus \pagedepth,
will not exceed \pagegoal. Note that \pageshrink is not taken into
account this time, as it was in the previous step.

Once this maximal size to be split off has been determined, TEX locates the
least-cost breakpoint in the current insertion item that will result in a box with
a height that is equal to this maximal size. The penalty associated with this
breakpoint is added to \insertpenalties, and \pagegoal is diminished by
the effective height plus depth of the box to be split off the insertion item.

29.5 Insertions in the output routine
When the output routine comes into action – more precisely: when TEX starts proces-
sing the tokens in the \output token list – all insertions that should be placed on the
current page have been put in their boxes, and it is the responsibility of the output
routine to put them somewhere in the box that is going to be shipped out.

The plain TEX output routine handles top inserts and footnotes by
packaging the following sequence:
\ifvoid\topins \else \unvbox\topins \fi
\pagebody
\ifvoid\footins \else \unvbox\footins \fi
Unboxing the insertion boxes makes the glue on various parts of the
page stretch or shrink in a uniform manner.

With TEX3 the insertion mechanism has been extended slightly: the parameter \holdinginserts
can be used to specify that insertions should not yet be placed in their boxes. This is
very useful if the output routine wants to recalculate the \vsize, or if the output
routine is called to do other intermediate calculations instead of ejecting a page.

During the output routine the parameter \insertpenalties holds the number of in-
sertion items that are being held over for the next page. In the plain TEX output routine
this is used after the last page:
\def\dosupereject{\ifnum\insertpenalties>0

% something is being held over
\line{}\kern-\topskip\nobreak\vfill\supereject\fi}

29.6 Plain TEX insertions
The plain TEX format has only two insertion classes: the footnotes and the top inserts.
The macro \pageinsert generates top inserts that are stretched to be exactly \vsize
high. The \midinsert macro tests whether the vertical material specified by the user
fits on the page; if so, it is placed there; if not, it is converted to a top insert.

Footnotes are allowed to be split, but once one has been split no further footnotes
should appear on the current page. This effect is attained by setting
\floatingpenalty=20000

Victor Eijkhout – TEX by Topic 243

Chapter 29. Insertions

The \floatingpenalty is added to \insertpenalties if an insertion follows a
split insertion of the same class. However, \floatingpenalty > 10 000 has infinite
cost, so TEX will take an earlier breakpoint for splitting off the page from the vertical
list.

Top inserts essentially contain only a vertical box which holds whatever the user spe-
cified. Thus such an insert cannot be split. However, the \endinsert macro puts a
\penalty100 on top of the box, so the insertion can be split with an empty part be-
fore the split. The effect is that the whole insertion is carried over to the next page.
As the \floatingpenalty for top inserts is zero, arbitrarily many of these inserts
can be moved forward until there is a page with sufficient space.

Further examples of insertion macros can be found in [40].

244 Victor Eijkhout – TEX by Topic

Chapter 30

File Input and Output

This chapter treats the various ways in which TEX can read from and write to external
files.

\input Read a specified file as TEX input.
\endinput Terminate inputting the current file after the current line.
\pausing Specify that TEX should pause after each line that is read from a file.
\inputlineno Number of the current input line.
\write Write a 〈general text〉 to the terminal or to a file.
\read Read a line from a stream into a control sequence.
\newread \newwrite Macro for allocating a new input/output stream.
\openin \closein Open/close an input stream.
\openout \closeout Open/close an output stream.
\ifeof Test whether a file has been fully read, or does not exist.
\immediate Prefix to have output operations executed right away.
\escapechar Number of the character that is used when control sequences are being

converted into character tokens. IniTEX default: 92.
\newlinechar Number of the character that triggers a new line in \write statements.

30.1 Including files: \input and \endinput

Large documents can be segmented in TEX by putting parts in separate files, and loa-
ding these with \input into the master file. The exact syntax for file names is imple-
mentation dependent; most of the time a .tex file extension is assumed if no explicit
extension is given. File names can be delimited with a space or with \relax. The
\input command is expandable.

If TEX encounters in an input file the \endinput statement, it acts as if the file ends
after the line on which the statement occurs. Any statements on the same line as
\endinput are still executed. The \endinput statement is expandable.

245

Chapter 30. File Input and Output

30.2 File I/O
TEX supports input and output streams for reading and writing files one line at a time.

30.2.1 Opening and closing streams

TEX supports up to 16 simultaneous input and 16 output streams. The plain TEX ma-
cros \newread and \newwrite give the number of an unused stream. This number
is assigned by a \chardef command. Input streams are completely independent of
output streams.

Input streams are opened by
\openin〈4-bit number〉〈equals〉〈filename〉

and closed by
\closein〈4-bit number〉

Output streams are opened by
\openout〈4-bit number〉〈equals〉〈filename〉

and closed by
\closeout〈4-bit number〉

If an output file does not yet exist, it is created by \openout; if it did exist, an
\openout will cause it to be overwritten.

The output operations \openout, \closeout, and \write can all three be prefixed
by \immediate; see below.

30.2.2 Input with \read

In addition to the \input command, which reads a whole file, TEX has the \read
operation, which reads one line from a file (or from the user terminal). The syntax of
the read command is

\read〈number〉to〈control sequence〉
The effect of this statement is that one input line is read from the designated stream,
and the control sequence is defined as a macro without parameters, having that line as
replacement text.

If the input line is not balanced with respect to braces, TEX will read more than one
line, continuing for as long as is necessary to get a balanced token list. TEX implicitly
appends an empty line to each input stream, so the last \read operation on a stream
will always yield a single \par token.

Read operations from any stream outside the range 0–15 – or streams not associated
with an open file, or on which the file end has been reached – read from the terminal.
If the stream number is positive the user is prompted with the name of the control
sequence being defined by the \read statement.

\read16 to \data
displays a prompt

246 Victor Eijkhout – TEX by Topic

30.3. Whatsits

\data=
and typing ‘my name’ in response makes the read statement equiva-
lent to
\def\data{my name }
The space at the end of the input derives from the line end; to prevent
this one could write
{\endlinechar=-1 \global\read16 to \data}

30.2.3 Output with \write

TEX’s \write command
\write〈number〉〈general text〉

writes a balanced token list to a file which has been opened by \openout, to the log
file, or to the terminal.

Write operations to a stream outside 0–15 – or to a stream that is not associated with
an open file – go to the log file; if the stream number is positive they go to the
terminal as well as to the log file.

The token list argument of \write, defined as
〈general text〉 −→ 〈filler〉{〈balanced text〉〈right brace〉

can have an implicit opening brace. This argument is expanded as if it were the repla-
cement text of an \edef, so, for instance, any macros and conditionals appearing are
expanded. No commands are executed, however. This expansion occurs at the time of
shipping out; see below. Until that time the argument token list is stored in a whatsit
item on the current list. See further Chapter 12 for a discussion of expansion during
writing.

A control sequence output by \write (or \message) is represented with a trailing
space, and using character number \escapechar for the escape character. The IniTEX
default for this is 92, the code for the backslash. The trailing space can be prevented
by prefixing the control sequence with \string.

30.3 Whatsits
There is an essential difference in execution between input and output: operations con-
cerning output (\openout, \closeout, \write) are not executed immediately; in-
stead, they are saved until the box in which they appear is shipped out to the dvi
file.

Writes and the other two output operations are placed in ‘whatsit’ items on whichever
list is currently being built. The actual operation occurs when the part of the page that
has the item is shipped out to the dvi file. This delayed output is made necessary by
TEX’s asynchronous output routine behaviour. See a worked-out example on page 134.

An \immediate\write – or any other \immediate output operation – is executed on
the spot, and does not place a whatsit item on the current list.

Victor Eijkhout – TEX by Topic 247

Chapter 30. File Input and Output

The argument of a \special command (see page 262) is also placed in a whatsit.

Whatsit items in leader boxes are ignored.

30.4 Assorted remarks
30.4.1 Inspecting input

TEX records the current line number in the current input file in the 〈internal integer〉
parameter \inputlineno (in TEX3).

If the parameter \pausing is positive, TEX shows every line that is input on the ter-
minal screen, and gives the user the opportunity to insert commands. These can for
instance be \show commands. Inserted commands are treated as if they were directly
in the source file: it is for instance not necessary to prefix them with ‘i’, as would be
necessary when TEX pauses for an error.

30.4.2 Testing for existence of files

TEX is not the friendliest of systems when you ask it to input a non-existing file.
Therefore the following sequence of commands can be used to prevent trouble:

\newread\instream \openin\instream= fname.tex
\ifeof\instream \message{File ’fname’ does not exist!}
\else \closein\instream \input fname.tex
\fi

Here an input stream is opened with the given file name. The end-of-file test is also
true if an input stream does not correspond to a physical file, so if this conditional is
not true, the file exists and an \input command can safely be given.

30.4.3 Timing problems

The synchronization between write operations on the one hand, and opening/closing
operations of files on the other hand, can be a crucial point. Auxiliary files, such as
are used by various formats to implement cross-references, are a good illustration of
this.

Suppose that during a run of TEX the auxiliary file is written, and at the end of the run
it has to be input again for a variety of purposes (such as seeing whether references
have changed). An \input command is executed right away, so the file must have
been closed with an \immediate\closeout. However, now it becomes possible that
the file is closed before all writes to it have been performed. The following sequence
remedies this:

\par\vfil\penalty -10000 \immediate\closeout\auxfile

The first three commands activate the output routine in order to close off the last page,
so all writes will indeed have been performed before the file is closed.

248 Victor Eijkhout – TEX by Topic

30.4. Assorted remarks

30.4.4 \message versus \immediate\write16

Messages to the user can be given using \message〈general text〉, which writes to the
terminal. Messages are appended to one another; the line is wrapped when the line
length (a TEX compile-time constant) has been reached. In TEX version2, a maximum
of 1000 characters is written per message; this is not a compile-time constant, but is
hard-wired into the TEX program.

Each message given with \immediate\write starts on a new line; the user can force
a new line in the message by including the character with number \newlinechar.
This parameter also works in \message.

30.4.5 Write inside a vertical box

Since a write operation winds up on the vertical list in a whatsit, issuing one at the
start of a \vtop will probably influence the height of that box (see Chapter 5). As an
example,

have the \vtop{\write\terminal{Hello!}\hbox{more text}}
dangling from

will have the more text dangling from the baseline (and when this book is TEXed the
message ‘Hello!’ appears on the screen).

30.4.6 Expansion and spaces in \write and \message

Both \write and \message expand their argument as if it were the replacement text
of an \edef. Therefore

\def\a{b}\message{\a}

will write out ‘b’.

Unexpandable control sequences are displayed with a trailing space (and prefixed with
the \escapechar):

\message{\hbox\vbox!}

will write out ‘\hbox \vbox !’. Undefined control sequences give an error here.

Expandable control sequences can be written out with some care:

\message{\noexpand\ifx}
\message{\string\ifx}
{\let\ifx\relax \message{\ifx}}

all write out ‘\ifx’.

Note, however, that spaces after expandable control sequences are removed in the input
processor, which goes into state S after a control sequence. Therefore

\def\a{b}\def\c{d}
\message{\a \c}

writes out ‘bd’. Inserting a space can be done as follows:

Victor Eijkhout – TEX by Topic 249

Chapter 30. File Input and Output

\def\space{ } % in plain TeX
\message{\a\space\c}

displays ‘b d’. Note that

\message{\a{ }\c}

does not work: it displays ‘b{ }d’ since braces are unexpandable character tokens.

250 Victor Eijkhout – TEX by Topic

Chapter 31

Allocation

TEX has registers of a number of types. For some of these, explicit commands exist
to define a synonym for a certain register; for all of them macros exist in the plain
format to allocate an unused register. This chapter treats the synonym and allocation
commands, and discusses some guidelines for macro writers regarding allocation.
\countdef Define a synonym for a \count register.
\dimendef Define a synonym for a \dimen register.
\muskipdef Define a synonym for a \muskip register.
\skipdef Define a synonym for a \skip register.
\toksdef Define a synonym for a \toks register.
\newbox Allocate an unused \box register.
\newcount Allocate an unused \count register.
\newdimen Allocate an unused \dimen register.
\newfam Allocate an unused math family.
\newinsert Allocate an unused insertion class.
\newlanguage (TEX3 only) Allocate a new language number.
\newmuskip Allocate an unused \muskip register.
\newskip Allocate an unused \skip register.
\newtoks Allocate an unused \toks register.
\newread Allocate an unused input stream.
\newwrite Allocate an unused output stream.

31.1 Allocation commands
In plain TEX, \new... macros are defined for allocation of registers. The registers of
TEX fall into two classes that are allocated in different ways. This is treated below.

The \newlanguage macro of plain TEX does not allocate any register. Instead it me-
rely assigns a number, starting from 0. TEX (version 3) can have at most 256 different
sets of hyphenation patterns.

The \new... macros of plain TEX are defined to be \outer (see Chapter 11 for a
precise explanation), which precludes use of the allocation macros in other macros.
Therefore the LATEX format redefines these macros without the \outer prefix.

251

Chapter 31. Allocation

31.1.1 \count, \dimen, \skip, \muskip, \toks

For these registers there exists a 〈registerdef〉 command, for instance \countdef, to
couple a specific register to a control sequence:

〈registerdef〉〈control sequence〉〈equals〉〈8-bit number〉
After the definition
\countdef\MyCount=42

the allocated register can be used as
\MyCount=314

or
\vskip\MyCount\baselineskip

The 〈registerdef〉 commands are used in plain TEX macros \newcount et cetera that
allocate an unused register; after
\newcount\MyCount

\MyCount can be used exactly as in the above two examples.

31.1.2 \box, \fam, \write, \read, \insert

For these registers there exists no 〈registerdef〉 command in TEX, so \chardef is used
to allocate box registers in the corresponding plain TEX macros \newbox, for instance.

The fact that \chardef is used implies that the defined control sequence does not
stand for the register itself, but only for its number. Thus after
\newbox\MyBox

it is necessary to write
\box\MyBox

Leaving out the \box means that the character in the current font with number \MyBox
is typeset. The \chardef command is treated further in Chapter 3.

31.2 Ground rules for macro writers
The \new... macros of plain TEX have been designed to form a foundation for macro
packages, such that several of such packages can operate without collisions in the same
run of TEX. In appendix B of the TEX book Knuth formulates some ground rules that
macro writers should adhere to.
1. The \new... macros do not allocate registers with numbers 0–9. These can

therefore be used as ‘scratch’ registers. However, as any macro family can
use them, no assumption can be made about the permanency of their con-
tents. Results that are to be passed from one call to another should reside in
specifically allocated registers.
Note that count registers 0–9 are used for page identification in the dvi file
(see Chapter 33), so no global assignments to these should be made.

252 Victor Eijkhout – TEX by Topic

31.2. Ground rules for macro writers

2. \count255, \dimen255, and \skip255 are also available. This is because
inserts are allocated from 254 downward and, together with an insertion box,
a count, dimen, and skip register, all with the same number, are allocated.
Since \box255 is used by the output routine (see Chapter 28), the count,
dimen, and skip with number 255 are freely available.

3. Assignments to scratch registers 0, 2, 4, 6, 8, and 255 should be local; as-
signments to registers 1, 3, 5, 7, 9 should be \global (with the exception
of the \count registers). This guideline prevents ‘save stack build-up’ (see
Chapter 35).

4. Any register can be used inside a group, as TEX’s grouping mechanism will
restore its value outside the group. There are two conditions on this use of
a register: no global assignments should be made to it, and it must not be
possible that other macros may be activated in that group that perform global
assignments to that register.

5. Registers that are used over longer periods of time, or that have to survive in
between calls of different macros, should be allocated by \new....

Victor Eijkhout – TEX by Topic 253

Chapter 32

Running TEX

This chapter treats the run modes of TEX, and some other commands associated with
the job being processed.
\everyjob Token list that is inserted at the start of each new job.
\jobname Name of the main TEX file being processed.
\end Command to finish off a run of TEX.
\bye Plain TEX macro to force the final output.
\pausing Specify that TEX should pause after each line that is read from a file.
\errorstopmode TEX will ask for user input on the occurrence of an error.
\scrollmode TEX fixes errors itself, but will ask the user for missing files.
\nonstopmode TEX fixes errors itself, and performs an emergency stop on serious

errors such as missing input files.
\batchmode TEX fixes errors itself and performs an emergency stop on serious errors

such as missing input files, but no terminal output is generated.

32.1 Jobs
TEX associates with each run a name for the file being processed: the \jobname. If
TEX is run interactively – meaning that it has been invoked without a file argument,
and the user types commands – the jobname is texput.

The \jobname can be used to generate the names of auxiliary files to be read or
written during the run. For instance, for a file story.tex the \jobname is story,
and writing
\openout\Auxiliary=\jobname.aux
\openout\TableOfContents=\jobname.toc

will create the files story.aux and story.toc.

32.1.1 Start of the job

TEX starts each job by inserting the \everyjob token list into the command stream.
Setting this variable during a run of TEX has no use, but a format can use it to identify

254

32.2. Run modes

itself to the user. If a format fills the token list, the commands therein are automati-
cally executed when TEX is run using that format.

32.1.2 End of the job

A TEX job is terminated by the \end command. This may involve first forcing the
output routine to process any remaining material (see Chapter 27). If the end of job
occurs inside a group TEX will give a diagnostic message. The \end command is not
allowed in internal vertical mode, because this would be inside a vertical box.

Usually some sugar coating of the \end command is necessary. For instance the plain
TEX macro \bye is defined as

\def\bye{\par\vfill\supereject\end}

where the \supereject takes care of any leftover insertions.

32.1.3 The log file

For each run TEX creates a log file. Usually this will be a file with as name the va-
lue of \jobname, and the extension .log. Other extensions such as .lis are used by
some implementations. This log file contains all information that is displayed on the
screen during the run of TEX, but it will display some information more elaborately,
and it can contain statistics that are usually not displayed on the screen. If the parame-
ter \tracingonline has a positive value, all the log file information will be shown
on the screen.

Overfull and underfull boxes are reported on the terminal screen, and they are dum-
ped using the parameters \showboxdepth and \showboxbreadth in the log file (see
Chapter 34). These parameters are also used for box dumps caused by the \showbox
command, and for the dump of boxes written by \shipout if \tracingoutput is set
to a positive value.

Statistics generated by commands such as \tracingparagraphs will be written to
the log file; if \tracingonline is positive they will also be shown on the screen.

Output operations to a stream that is not open, or to a stream with a number that is
not in the range 0–15, go to the log file. If the stream number is positive, they also
go to the terminal.

32.2 Run modes
By default, TEX goes into \errorstopmode if an error occurs: it stops and asks for
input from the user. Some implementations have a way of forcing TEX into errorstop-
mode when the user interrupts TEX, so that the internal state of TEX can be inspected
(and altered). See page 273 for ways to switch the run mode when TEX has been
interrupted.

Victor Eijkhout – TEX by Topic 255

Chapter 32. Running TEX

Often, TEX can fix an error itself if the user asks TEX just to continue (usually by
hitting the return key), but sometimes (for instance in alignments) it may take a while
before TEX is on the right track again (and sometimes it never is). In such cases the
user may want to turn on \scrollmode, which instructs TEX to fix as best it can any
occurring error without confirmation from the user. This is usually done by typing ‘s’
when TEX asks for input.

In \scrollmode, TEX also does not ask for input after \show... commands. Howe-
ver, some errors, such as a file that could not be found for \input, are not so easily
remedied, so the user will still be asked for input.

With \nonstopmode TEX will scroll through errors and, in the case of the kind of
error that cannot be recovered from, it will make an emergency stop, aborting the
run. Also TEX will abort the run if a \read is attempted from the terminal. The
\batchmode differs only from nonstopmode in that it gives messages only to the log
file, not to the terminal.

256 Victor Eijkhout – TEX by Topic

Chapter 33

TEX and the Outside World

This chapter treats those commands that bear relevance to dvi files and formats. It
gives some global information about IniTEX, font and format files, Computer Modern
typefaces, and WEB.

\dump Dump a format file; possible only in IniTEX, not allowed inside a group.
\special Write a 〈balanced text〉 to the dvi file.
\mag 1000 times the magnification of the document.
\year The year of the current job.
\month The month of the current job.
\day The day of the current job.
\time Number of minutes after midnight that the current job started.
\fmtname Macro containing the name of the format dumped.
\fmtversion Macro containing the version of the format dumped.

33.1 TEX, IniTEX, VirTEX
In the terminology established in TEX: the Program, [23], TEX programs come in three
flavours. IniTEX is a version of TEX that can generate formats; VirTEX is a produc-
tion version without preloaded format, and TEX is a production version with preloaded
(plain) format. Unfortunately, this terminology is not adhered to in general. A lot of
systems do not use preloaded formats (the procedure for making them may be impos-
sible on some operating systems), and call the ‘virgin TEX’ simply TEX. This manual
also follows that convention.

33.1.1 Formats: loading

A format file (usually with extension .fmt) is a compact dump of TEX’s internal struc-
tures. Loading a format file takes a considerably shorter time than would be needed
for loading the font information and the macros that constitute the format.

Both TEX and IniTEX can load a format; the user specifies this by putting the name
on the command line

257

Chapter 33. TEX and the Outside World

% tex &plain

or at the ** prompt
% tex
This is TeX. Version
** &plain

preceded by an ampersand (for UNIX, this should be \& on the command line). An
input file name can follow the format name in both places.

IniTEX does not need a format, but if no format is specified for (Vir)TEX, it will try
to load the plain format, and halt if that cannot be found.

33.1.2 Formats: dumping

IniTEX is the only version of TEX that can dump a format, since it is the only version
of TEX that has the command \dump, which causes the internal structures to be dum-
ped as a format. It is also the only version of TEX that has the command \patterns,
which is needed to specify a list of hyphenation patterns.

Dumping is not allowed inside a group, that is
{ ... \dump }

is not allowed. This restriction prevents difficulties with TEX’s save stack. After the
\dump command TEX gives an elaborate listing of its internal state, and of the font
names associated with fonts that have been loaded and ends the job.

An interesting possibility arises from the fact that IniTEX can both load and dump
a format. Suppose you have written a set of macros that build on top of plain TEX,
superplain.tex. You could then call
% initex &plain superplain
*\dump

and get a format file superplain.fmt that has all of plain, and all of your macros.

33.1.3 Formats: preloading

On some systems it is possible to interrupt a running program, and save its ‘core
image’ such that this can be started as an independent program. The executable made
from the core image of a TEX program interrupted after it has loaded a format is
called a TEX program with preloaded format. The idea behind preloaded formats is
that interrupting TEX after it has loaded a format, and making this program available
to the user, saves in each run the time for loading the format. In the good old days
when computers were quite a bit slower this procedure made sense. Nowadays, it does
not seem so necessary. Besides, dumping a core image may not always be possible.

33.1.4 The knowledge of IniTEX

If no format has been loaded, IniTEX knows very little. For instance, it has no open/close
group characters. However, it can not be completely devoid of knowledge lest there be
no way to define anything.

258 Victor Eijkhout – TEX by Topic

33.2. More about formats

Here is the extent of its knowledge.

• \catcode‘\\=0, \escapechar=‘\\ (see page 29).
• \catcode‘\^^M=5, \endlinechar=‘\^^M (see page 29).
• \catcode‘\ =10 (see page 30).
• \catcode‘\%=14 (see page 30).
• \catcode‘\^^?=15 (see page 30).
• \catcodex=11 for x = ‘a..‘z,‘A..‘Z (see page 30).
• \catcodex=12 for all other character codes

(see page 30).
• \sfcodex =999 for x = ‘A..‘Z, \sfcodex=1000 for all other characters

(see page 188).
• \lccode‘a..‘z,‘A..‘Z=‘a..‘z, \uccode‘a..‘z,‘A..‘Z=‘A..‘Z, \lccodex=0,

\uccodex=0 for all other characters (see page 48).
• \delcode‘.=0, \delcodex=-1 for all other characters (see page 192).
• \mathcodex="!7100+x for all lowercase and uppercase letters, \mathcodex="!7000+

x for all digits, \mathcodex=x for all other characters (see page 197).
• \tolerance=10000, \mag=1000, \maxdeadcycles=25.

33.1.5 Memory sizes of TEX and IniTEX

The main memory size of TEX and IniTEX is controlled by four constants in the source
code: mem bot, mem top, mem min, and mem max. For IniTEX’s memory mem bot =
mem min and mem top = mem max; for TEX mem bot and mem top record the main
memory size of the IniTEX used to dump the format. Thus versions of TEX and IniTEX
have to be adapted to each other in this respect.

TEX’s own main memory can be bigger than that of the corresponding IniTEX: in
general mem min ≤ mem bot and mem top ≤ mem max.

For IniTEX a smaller main memory can suffice, as this program is typically not meant
to do real typesetting. There may even be a real need for the main memory to be
smaller, because IniTEX needs a lot of auxiliary storage for initialization and for buil-
ding the hyphenation table.

33.2 More about formats
33.2.1 Compatibility

TEX has a curious error message: ‘Fatal format error: I’m stymied’, which is given
if TEX tries to load a format that was made with an incompatible version of IniTEX.
See the point above about memory sizes, and Chapter 35 for the hash size (parame-
ters hash size and hash prime) and the hyphenation exception dictionary (parameter
hyph size).

Victor Eijkhout – TEX by Topic 259

Chapter 33. TEX and the Outside World

33.2.2 Preloaded fonts

During a run of TEX the only information needed about fonts is the data that is found
in the tfm files (see below). Since a run of TEX, especially if the input contains
math material, can easily access 30–40 fonts, the disk access for all the tfm files
can become significant. Therefore the plain format and LATEX load these metrics files
in IniTEX. A TEX version using such a format does not need to load any tfm files.

On the other hand, if a format has the possibility of accessing a range of typefaces, it
may be advantageous to have metrics files loaded on demand during the actual run of
TEX.

33.2.3 The plain format

The first format written for TEX, and the basis for all later ones, is the plain format,
described in the TEX book. It is a mixture of
• definitions and macros one simply cannot live without such as the initial

\catcode assignments, all of the math delimiter definitions, and the \new...
macros;

• constructs that are useful, but for which LATEX and other packages use a dif-
ferent implementation, such as the tabbing environment; and

• some macros that are insufficient for any but the simplest applications: \item
and \beginsection are in this category.

It is the first category which Knuth meant to serve as a foundation for future macro
packages, so that they can live peacefully together (see Chapter 31). This idea is re-
flected in the fact that the name ‘plain’ is not capitalized: it is the basic set of macros.

33.2.4 The LATEX format

The LATEX format, written by Leslie Lamport of Digital Equipment Corporation and
described in [29], was released around 1985. The LATEX format, using its own version
of plain.tex (called lplain.tex), is not compatible with plain TEX; a number of
plain macros are not available. Still, it contains large parts of the plain format (even
when they overlap with its own constructs).

LATEX is a powerful format with facilities such as marginal notes, floating objects, cross
referencing, and automatic table of contents generation. Its main drawback is that the
‘style files’ which define the actual layout are quite hard to write (although LATEX is
in the process of a major revision, in which this problem will be tackled; see [34]
and [33]). As a result, people have had at their disposal mostly the styles written by
Leslie Lamport, the layout of which is rather idiosyncratic. See [6] for a successful
attempt to replace these styles.

33.2.5 Mathematical formats

There are two formats with extensive facilities for mathematics typesetting: AmsTEX [43]
(which originated at the American Mathematical Society) and LAMSTEX [44]. The

260 Victor Eijkhout – TEX by Topic

33.3. The dvi file

first of these includes more facilities than plain TEX or LATEX for typesetting mathema-
tics, but it lacks features such as automatic numbering and cross-referencing, available
in LATEX, for instance. LAMSTEX, then, is the synthesis of AmsTEX and LATEX. Also
it includes still more features for mathematics, such as complicated tables and com-
mutative diagrams.

33.2.6 Other formats

Other formats than the above exist: for instance, Phyzzx [51], TeXsis [35], Macro
TEX [15], eplain [4], and TEXT1 [13]. Typically, such formats provide the facilities
of LATEX, but try to be more easily adaptable by the user. Also, in general they have
been written with the intention of being an add-on product to the plain format.

This book is also written in an ‘other format’: the lollipop format. This format does
not contain user macros, but the tools with which a style designer can program them;
see [12].

33.3 The dvi file
The dvi file (this term stands for ‘device independent’) contains the output of a TEX
run: it contains compactly dumped representations of boxes that have been sent there
by \shipout〈box〉. The act of shipping out usually occurs inside the output routine,
but this is not necessarily so.

33.3.1 The dvi file format

A dvi file is a byte-oriented file, consisting of a preamble, a postamble, and a list of
pages.

Access for subsequent software to a completed dvi file is strictly sequential in nature:
the pages are stored as a backwards linked list. This means that only two ways of
accessing are possible:

• given the start of a page, the next can be found by reading until an end-of-
page code is encountered, and

• starting at the end of the file pages can be read backwards at higher speed, as
each beginning-of-page code contains the byte position of the previous one.

The preamble and postamble contain

• the magnification of the document (see below),
• the unit of measurement used for the document, and
• possibly a comment string.

The postamble contains in addition a list of the font definitions that appear on the
pages of the file.

Neither the preamble nor the postamble of the file contains a table of byte positions
of pages. The full definition of the dvi file format can be found in [23].

Victor Eijkhout – TEX by Topic 261

Chapter 33. TEX and the Outside World

33.3.2 Page identification

Whenever a \shipout occurs, TEX also writes the values of counters 0–9 to the dvi
file and the terminal. Ordinarily, only counter 0, the page number, is used, and the
other counters are zero. Those zeros are not output to the terminal. The other counters
can be used to indicate further structure in the document. Log output shows the non-
zero counters and the zero counters in between.

33.3.3 Magnification

Magnification of a document can be indicated by the 〈integer parameter〉 \mag, which
specifies 1000 times the magnification ratio.

The dvi file contains the value of \mag for the document in its preamble and postam-
ble. If no true dimensions are used the dvi file will look the same as when no
magnification would have been used, except for the \mag value in the preamble and
the postamble.

Whenever a true dimension is used it is divided by the value of \mag, so that the
final output will have the dimension as prescribed by the user. The \mag parameter
cannot be changed after a true dimension has been used, or after the first page has
been shipped to the dvi file.

Plain TEX has the \magnification macro for globally sizing the document, without
changing the physical size of the page:
\def\magnification{\afterassignment\m@g\count@}
\def\m@g{\mag\count@
\hsize6.5truein\vsize8.9truein\dimen\footins8truein}

The explanation for this is as follows: the command \m@g is saved with an \afterassignment
command, and the magnification value (which is 1000 times the actual magnification
factor) is assigned to \count@. After this assignment, the macro \m@g assigns the ma-
gnification value to \mag, and the horizontal and vertical size are reset to their original
values 6.5truein and 8.9truein. The \footins is also reset.

33.4 Specials
TEX is to a large degree machineindependent, but it still needs a hook for machine-
dependent extensions. This is the \special command, which writes a 〈balanced text〉
to the dvi file. TEX does not interpret this token list: it assumes that the printer driver
knows what to do with it. \special commands are supposed not to change the x and
y position on the page, so that the implementation of TEX remains independent of the
actual device driver that handles the \special.

The most popular application of specials is probably the inclusion of graphic material,
written in some page description language, such as PostScript. The size of the graphics
can usually be determined from the file containing it (in the case of encapsulated
PostScript through the ‘bounding box’ data), so TEX can leave space for such material.

262 Victor Eijkhout – TEX by Topic

33.5. Time

33.5 Time
TEX has four parameters, \year, \month, \day, and \time, that tell the time when
the current job started. After this, the parameters are not updated. The user can change
them at any time.

All four parameters are integers; the \time parameter gives the number of minutes
since midnight that the current job started.

33.6 Fonts
Font information is split in the TEX system into the metric information (how high,
wide, and deep is a character), and the actual description of the characters in a font.
TEX, the formatter, needs only the metric information; printer drivers and screen pre-
viewers need the character descriptions. With this approach it is for instance possible
for TEX to use with relative ease the resident fonts of a printer.

33.6.1 Font metrics

The metric information of TEX’s fonts is stored in tfm files, which stands for ‘TEX
font metric’ files. Metrics files contain the following information (see [23] for the full
definition):
• the design size of a font;
• the values for the \fontdimen parameters (see Chapter 4);
• the height, depth, width, and italic correction of individual characters;
• kerning tables;
• ligature tables;
• information regarding successors and extensions of math characters (see Chap-

ter 21).
Metrics files use a packed format, but they can be converted to and from a readable
format by the auxiliary programs tftopl and pltotf (see [26]). Here pl stands for
‘property list’, a term deriving from the programming language Lisp. Files in pl for-
mat are just text, so they can easily be edited; after conversion they can then again be
used as tfm files.

33.6.2 Virtual fonts

With ‘virtual fonts’ (see [24]) it is possible that what looks like one font to TEX
resides in more than one physical font file. Also, virtual fonts can be used to change
in effect the internal organization of font files.

For TEX itself, the presence of virtual fonts makes no difference: everything is still
based on tfm files containing metric information. However, the screen or printer driver
that displays the resulting dvi file on the screen or on a printer will search for files
with extension .vf to determine how characters are to be interpreted. The vf file can,
for instance, instruct the driver to interpret a character as a certain position in a certain

Victor Eijkhout – TEX by Topic 263

Chapter 33. TEX and the Outside World

font file, to interpret a character as more than one position (a way of forming accented
characters), or to include \special information (for instance to set gray levels).

Readable variants of vf files have extension vpl, analogous to the pl files for the
tfm files; see above. Conversion between vf and vpl files can be performed with the
vftovp and vptovf programs.

However, because virtual fonts are a matter for device drivers, no more details will be
given in this book.

33.6.3 Font files

Character descriptions are stored in three types of files.

gf Generic Font files. This is the file type that the Metafont program generates. There
are not many previewers or printer drivers that use this type of file directly.

pxl Pixel files. The pxl format is a pure bitmap format. Thus it is easy to generate
pxl files from, for instance, scanner images.
This format should be superseded by the pk format. Pixel files can become
rather big, as their size grows quadratically in the size of the characters.

pk Packed files. Pixel files can be packed by a form of run-length encoding: instead
of storing the complete bitmap only the starting positions and lengths of ‘runs’
of black and white pixels are stored. This makes the size of pk files appro-
ximately linear in the size of the characters. However, a previewer or printer
driver using a packed font file has to unpack it before it is able to use it.

The following conversion programs exist: gftopxl, gftopk, pktopxl, pxltopk.

33.6.4 Computer Modern

The only family of typefaces that comes with TEX in the standard distribution is the
‘Computer Modern’ family. This is an adaptation (using the terminology of [42]) by
Donald Knuth of the Monotype Modern 8A typeface that was used for the first volume
of his Art of Computer Programming series. The ‘modern faces’ all derive from the
types that were cut between 1780 and 1800 by Firmin Didot in France, Giambattista
Bodoni in Italy, and Justus Erich Walbaum in Germany. After the first two, these types
are also called ‘Didone’ types. This name was coined in the Vox classification of types
[50]. Ultimately, the inspiration for the Didone types is the ‘Romain du Roi’, the type
that was designed by Nicolas Jaugeon around 1692 for the French Imprimerie Royale.

Didone types are characterized by a strong vertical orientation, and thin hairlines. The
vertical accent is strengthened by the fact that the insides of curves are flattened. The
result is a clear and brilliant page, provided that the printing is done carefully and
on good quality paper. However, they are quite vulnerable; [48] compares them to
the distinguished but fragile furniture from the same period, saying one is afraid to
use either, ‘for both seem in danger of breaking in pieces’. With the current prolifera-
tion of low resolution (around 300 dot per inch) printers, the Computer Modern is a
somewhat unfortunate choice.

264 Victor Eijkhout – TEX by Topic

33.7. TEX and web

Recently, Donald Knuth has developed a new typeface (or rather, a subfamily of ty-
pefaces) by changing parameters in the Computer Modern family. The result is a so-
called ‘Egyptian’ typeface: Computer Concrete [22]. The name derives from the fact
that it was intended primarily for the book Concrete Mathematics. Egyptian typefaces
(they fall under the ‘Mécanes’ in the Vox classification, meaning constructed, not de-
rived from written letters) have a very uniform line width and square serifs. They do
not have anything to do with Egypt; such types happened to be popular in the first
half of the nineteenth century when Egyptology was developing and popular.

33.7 TEX and web
The TEX program is written in WEB, a programming language that can be considered
as a subset of Pascal, augmented with a preprocessor.

TEX makes no use of some features of Pascal, in order to facilitate porting to Pascal
systems other than the one it was originally designed for, and even to enable automatic
translation to other programming languages such as C. For instance, it does not use
the Pascal With construct. Also, procedures do not have output parameters; apart from
writing to global variables, the only way values are returned is through Function
values.

Actually, WEB is more than a superset of a subset of Pascal (and to be more precise,
it can also be used with other programming languages); it is a ‘system of structured
documentation’. This means that the WEB programmer writes pieces of program code,
interspersed with their documentation, in one file. This idea of ‘literate programming’
was introduced in [19]; for more information, see [41].

Two auxiliary programs, Tangle and Weave, can then be used to strip the documenta-
tion and convert WEB into regular Pascal, or to convert the WEB file into a TEX file
that will typeset the program and documentation.

Portability of WEB programs is achieved by the ‘change file’ mechanism. A change
file is a list of changes to be made to the WEB file; a bit like a stream editor script.
These changes can comprise both adaptations of the WEB file to the particular Pascal
compiler that will be used, and bug fixes to TEX. Thus the TeX.web file need never
be edited.

33.8 The TEX Users Group
TEX users have joined into several users groups over the last decade. Many national or
language users groups exist, and a lot of them publish newsletters. The oldest of all
TEX users groups is simply called that: the TEX Users Group, or TUG, and its journal
is called TUGboat. You can reach them at

TEX Users Group
P.O. Box 2311
Portland, OR 97208-2311, USA

Victor Eijkhout – TEX by Topic 265

Chapter 33. TEX and the Outside World

or electronically at office@tug.org on the Internet.

266 Victor Eijkhout – TEX by Topic

Chapter 34

Tracing

TEX’s workings are often quite different from what the programmer expected, so there
are ways to discover how TEX arrived at the result it did. The \tracing... com-
mands write all information of a certain kind to the log file (and to the terminal if
\tracingonline is positive), and a number of \show... commands can be used to
ask the current status or value of various items of TEX.

In the following list, only \show and \showthe display their output on the terminal
by default, other \show... and \tracing... commands write to the log file. They
will write in addition to the terminal if \tracingonline is positive.

\meaning Give the meaning of a control sequence as a string of characters.
\show Display the meaning of a control sequence.
\showthe Display the result of prefixing a token with \the.
\showbox Display the contents of a box.
\showlists Display the contents of the partial lists currently built in all modes. This

is treated on page 77.
\tracingcommands If this is 1 TEX displays primitive commands executed; if this is

2 or more the outcome of conditionals is also recorded.
\tracingmacros If this is 1, TEX shows expansion of macros that are performed and

the actual values of the arguments; if this is 2 or more 〈token parameter〉s
such as \output and \everypar are also traced.

\tracingoutput If this is positive, the log file shows a dump of boxes that are ship-
ped to the dvi file.

\showboxdepth The number of levels of box dump that are shown when boxes are
displayed.

\showboxbreadth Number of successive elements on each level that are shown when
boxes are displayed.

\tracingonline If this parameter is positive, TEX will write trace information to the
terminal in addition to the log file.

\tracingparagraphs If this parameter is positive, TEX generates a trace of the line
breaking algorithm.

\tracingpages If this parameter is positive, TEX generates a trace of the page brea-
king algorithm.

267

Chapter 34. Tracing

\tracinglostchars If this parameter is positive, TEX gives diagnostic messages whe-
never a character is accessed that is not present in a font. Plain default: 1.

\tracingrestores If this parameter is positive, TEX will report all values that are
restored when a group ends.

\tracingstats If this parameter is 1, TEX reports at the end of the job the usage of
various internal arrays; if it is 2, the memory demands are given whenever a
page is shipped out.

34.1 Meaning and content: \show, \showthe, \meaning
The meaning of control sequences, and the contents of those that represent internal
quantities, can be obtained by the primitive commands \show, \showthe, and \meaning.

The control sequences \show and \meaning are similar: the former will give output
to the log file and the terminal, whereas the latter will produce the same tokens, but
they are placed in TEX’s input stream.

The meaning of a primitive command of TEX is that command itself:
\show\baselineskip

gives
\baselineskip=\baselineskip

The meaning of a defined quantity is its definition:
\show\pageno

gives
\pageno=\count0

The meaning of a macro is its parameter text and replacement text:
\def\foo#1?#2\par{\set{#1!}\set{#2?}}
\show\foo

gives
\foo=macro:
#1?#2\par ->\set {#1!}\set {#2?}

For macros without parameters the part before the arrow (the parameter text) is empty.

The \showthe command will display on the log file and terminal the tokens that \the
produces. After \show, \showthe, \showbox, and \showlists TEX asks the user
for input; this can be prevented by specifying \scrollmode. Characters generated by
\meaning and \the have category 12, except for spaces (see page 34); the value of
\escapechar is used when control sequences are represented.

34.2 Show boxes: \showbox, \tracingoutput
If \tracingoutput is positive the log file will receive a dumped representation of all
boxes that are written to the dvi file with \shipout. The same representation is used
by the command \showbox〈8-bit number〉.

268 Victor Eijkhout – TEX by Topic

34.2. Show boxes: \showbox, \tracingoutput

In the first case TEX will report ‘Completed box being shipped out’; in the second
case it will enter \errorstopmode, and tell the user ‘OK. (see the transcript file)’. If
\tracingonline is positive, the box is also displayed on the terminal; if \scrollmode
has been specified, TEX does not stop for input.

The upper bound on the number of nested boxes that is dumped is \showboxdepth;
each time a level is visited at most \showboxbreadth items are shown, the remainder
of the list is summarized with etc. For each box its height, depth, and width are
indicated in that order, and for characters it is stated from what font they were taken.

After
\font\tenroman=cmr10 \tenroman
\setbox0=\hbox{g}
\showbox0
the log file will show
\hbox(4.30554+1.94444)x5.00002
.\tenroman g
indicating that the box was 4.30554pt high, 1.94444pt deep, and
5.00002pt wide, and that it contained a character ‘g’ from the font
\tenroman. Note that the fifth decimal of all sizes may be rounded
because TEX works with multiples of 2−16pt.

The next example has nested boxes,

\vbox{\hbox{g}\hbox{o}}

and it contains \baselineskip glue between the boxes. After a \showbox command
the log file output is:

\vbox(16.30554+0.0)x5.00002
.\hbox(4.30554+1.94444)x5.00002
..\tenroman g
.\glue(\baselineskip) 5.75002
.\hbox(4.30554+0.0)x5.00002
..\tenroman o

Each time a new level is entered an extra dot is added to the front of the line. Note
that TEX tells explicitly that the glue is \baselineskip glue; it inserts names like
this for all automatically inserted glue. The value of the baselineskip glue here is such
that the baselines of the boxes are at 12 point distance.

Now let us look at explicit (user) glue. TEX indicates the ratio by which it is stretched
or shrunk.

s
\hbox to 20pt {\kern10pt \hskip0pt plus 5pt}
gives (indicating that the available stretch has been multiplied by 2.0):
\hbox(0.0+0.0)x20.0, glue set 2.0
.\kern 10.0
.\glue 0.0 plus 5.0
and
\hbox to 0pt {\kern10pt \hskip0pt minus 20pt}

Victor Eijkhout – TEX by Topic 269

Chapter 34. Tracing

gives (the shrink has been multiplied by 0.5)
\hbox(0.0+0.0)x0.0, glue set - 0.5
.\kern 10.0
.\glue 0.0 minus 20.0
respectively.

This is an example with infinitely stretchable or shrinkable glue:
\hbox(4.00000+0.14000)x15.0, glue set 9.00000fil

This means that the horizontal box contained fil glue, and it was set such that its
resulting width was 9pt.

Underfull boxes are dumped like all other boxes, but the usual ‘Underfull hbox
detected at line...’ is given. Overfull horizontal boxes contain a vertical rule of
width \overfullrule:
\hbox to 5pt {\kern10pt}

gives
\hbox(0.0+0.0)x5.0
.\kern 10.0
.\rule(*+*)x5.0

Box leaders are not dumped completely:
.\leaders 40.0
..\hbox(4.77313+0.14581)x15.0, glue set 9.76852fil
...\tenrm a
...\glue 0.0 plus 1.0fil

is the dump for
\leaders\hbox to 15pt{\tenrm a\hfil}\hskip 40pt

Preceding or trailing glue around the leader boxes is also not indicated.

34.3 Global statistics
The parameter \tracingstats can be used to force TEX to report at the end of the
job the global use of resources. Some production versions of TEX may not have this
option.

As an example, here are the statistics for this book:
Here is how much of TeX’s memory you used:

String memory (bounded by ‘pool size’):
877 strings out of 4649
9928 string characters out of 61781

Main memory, control sequences, font memory:
53071 words of memory out of 262141
2528 multiletter control sequences out of 9500
20137 words of font info for 70 fonts,

out of 72000 for 255

270 Victor Eijkhout – TEX by Topic

34.3. Global statistics

Hyphenation:
14 hyphenation exceptions out of 607

Stacks: input, nest, parameter, buffer, and save stack respectively,
17i,6n,19p,245b,422s stack positions out of
300i,40n,60p,3000b,4000s

Victor Eijkhout – TEX by Topic 271

Chapter 35

Errors, Catastrophes, and Help

When TEX is running, various errors can occur. This chapter treats how errors in the
input are displayed, and what sort of overflow of internal data structures of TEX can
occur.
\errorcontextlines (TEX3 only) Number of additional context lines shown in error

messages.
\errmessage Report an error, giving the parameter of this command as message.
\errhelp Tokens that will be displayed if the user asks further help after an \errmessage.

35.1 Error messages
When TEX is running in \errorstopmode (which it usually is; see Chapter 32 for
the other running modes), errors occurring are reported on the user terminal, and TEX
asks the user for further instructions. Errors can occur either because of some internal
condition of TEX, or because a macro has issued an \errmessage command.

If an error occurs TEX shows the input line on which the error occurred. If the of-
fending command was not on that line but, for instance, in a macro that was called
– possibly indirectly – from that line, the line of that command is also shown. If the
offending command was indirectly called, an additional \errorcontextlines number
of lines is shown with the preceding macro calls.

A value of \errorcontextlines = 0 causes ... to be printed as the sole indication
that there is a context. Negative values inhibit even this.

For each macro in the sequence that leads to the offending command, TEX attempts to
display some preceding and some following tokens. First one line is displayed ending
with the – indirectly – offending command; then, one line lower some following tokens
are given.

This paragraph ends \vship1cm with a skip.
gives
! Undefined control sequence.
l.1 This paragraph ends \vship

1cm with a skip.

272

35.2. Overflow errors

If TEX is not running in some non-stop mode, the user is given the chance to patch
errors or to ask for further information. In general the following options are available:
〈return〉 TEX will continue processing. If the error was something innocent that TEX

could either ignore or patch itself, this is the easy way out.
h Give further details about the error. If the error was caused by an \errmessage

command, the \errhelp tokens will be displayed here.
i Insert. The user can insert some material. For example, if a control sequence is

misspelled, the correct command can sometimes be inserted, as
i\vskip
for the above example. Also, this is an opportunity for inserting \show com-
mands to inspect TEX’s internal state. However, if TEX is in the middle of
scanning something complicated, such commands will not be executed, or will
even add to the confusion.

s (\scrollmode) Scroll further errors, but display the messages. TEX will patch any
further errors. This is a handy option, for instance if the error occurs in an
alignment, because the number of subsequent errors tends to be rather large.

r (\nonstopmode) Run without stopping. TEX will never stop for user interaction.
q (\batchmode) Quiet running. TEX will never stop for user interaction, and does not

give any more terminal output.
x Exit. Abort this run of TEX.
e Edit. This option is not available on all TEX system. If it is, the run of TEX is

aborted, and an editor is started, opening with the input file, maybe even on
the offending line.

35.2 Overflow errors
Harsh reality imposes some restrictions on how elaborate TEX’s workings can get.
Some restrictions are imposed by compile-time constants, and are therefore fairly loose,
but some depend strongly on the actual computer implementation.

Here follows the list of all categories of overflow that prompt TEX to report ‘Capacity
exceeded’. Most bounds involved are (determined by) compile-time constants; their
values given here in parentheses are those used in the source listing of TEX in [25].
Actual values may differ, and probably will. Remember that TEX was developed in the
good old days when even big computers were fairly small.

35.2.1 Buffer size (500)

Current lines of all files that are open are kept in TEX’s input buffer, as are control
sequence names that are being built with \csname...\endcsname.

35.2.2 Exception dictionary (307)

The maximum number of hyphenation exceptions specified by \hyphenation must be
a prime number. Two arrays with this many halfwords are allocated.

Victor Eijkhout – TEX by Topic 273

Chapter 35. Errors, Catastrophes, and Help

Changing this number makes formats incompatible; that is, TEX can only use a format
that was made by an IniTEX with the same value for this constant.

35.2.3 Font memory (20 000)

Information about fonts is stored in an array of memory words. This is easily overflo-
wed by preloading too many fonts in IniTEX.

35.2.4 Grouping levels

The number of open groups should be recordable in a quarter word. There is no
compile-time constant corresponding to this.

35.2.5 Hash size (2100)

Maximum number of control sequences. It is suggested that this number should not
exceed 10% of the main memory size. The values in TEX and IniTEX should agree;
also the hash prime values should agree.

This value is rather low; for macro packages that are more elaborate than plain TEX a
value of about 3000 is more realistic.

35.2.6 Number of strings (3000)

The maximum number of strings must be recordable in a half word.

35.2.7 Input stack size (200)

For each input source an item is allocated on the input stack. Typical input sources are
input files (but their simultaneous number is more limited; see below), and token lists
such as token variables, macro replacement texts, and alignment templates. A macro
with ‘runaway recursion’ (for example, \def\mac{{\mac}}) will overflow this stack.

TEX performs some optimization here: before the last call in a token list all token lists
ending with this call are cleared. This process is similar to ‘resolving tail recursion’
(see Chapter 11).

35.2.8 Main memory size (30 000)

Almost all ‘dynamic’ objects of TEX, such as macro definition texts and all material
on the current page, are stored in the main memory array. Formats may already take
20 000 words of main memory for macro definitions, and complicated pages containing
for instance the LATEX picture environment may easily overflow this array.

TEX’s main memory is divided in words, and a half word is supposed to be able to
address the whole of the memory. Thus on current 32-bit computers the most common
choice is to let the main memory size be at most 64K bytes. A half word address can
then be stored in 16 bits, half a machine word.

274 Victor Eijkhout – TEX by Topic

35.2. Overflow errors

However, so-called ‘Big TEX’ implementations exist that have a main memory larger
than 64K words. Most compilers will then allocate 32-bit words for addressing this
memory, even if (say) 18 bits would suffice. Big TEXs therefore become immedia-
tely a lot bigger when they cross the 64K threshold. Thus they are usually not found
on microcomputers, although virtual memory schemes for these are possible; see for
instance [45].

TEX can have a bigger main memory than IniTEX; see Chapter 33 for further details.

35.2.9 Parameter stack size (60)

Macro parameters may contain macro calls with further parameters. The number of
parameters that may occur nested is bounded by the parameter stack size.

35.2.10 Pattern memory (8000)

Hyphenation patterns are stored in a trie array. The default size of 8000 hyphenation
patterns seems sufficient for English or Italian, for example, but it is not for Dutch or
German.

35.2.11 Pattern memory ops per language

The number of hyphenation ops (see the literature about hyphenation: [30] and ap-
pendix H of [25]) should be recordable in a quarter word. There is no compile-time
constant corresponding to this. TEX version 2 had the same upper bound, but gave no
error message in case of overflow. Again, for languages such as Dutch and German
this bound is too low. There are versions of TEX that have a higher bound here.

35.2.12 Pool size (32 000)

Strings are error messages and control sequence names. They are stored using one
byte per character. TEX has initially about 23 000 characters worth of strings.

The pool will overflow if a user defines a large number of control sequences on top of
a substantial macro package. However, even if the user does not define any new com-
mands overflow may occur: crossreferencing schemes also work by defining control
sequences. For large documents a pool size of 40 000 or 60 000 is probably sufficient.

35.2.13 Save size (600)

Quantities that are assigned to inside a group must be restored after the end of that
group. The save stack is where the values to be restored are kept; the size of the save
stack limits the number of values that can be restored.

Alternating global and local assignments to a value will lead to ‘save stack build-
up’: for each local assignment following a global assignment the previous value of the
variable is saved. Thus an alternation of such assignments will lead to an unnecessary
proliferation of items on the save stack.

Victor Eijkhout – TEX by Topic 275

Chapter 35. Errors, Catastrophes, and Help

35.2.14 Semantic nest size (40)

Each time TEX switches to a mode nested inside another mode (for instance when
processing an \hbox inside a \vbox) the current state is pushed on the semantic nest
stack. The semantic nest size is the maximum number of levels that can be pushed.

35.2.15 Text input levels (6)

The number of nested \input files has to be very limited, as the current lines are all
kept in the input buffer.

276 Victor Eijkhout – TEX by Topic

Chapter 36

The Grammar of TEX

Many chapters in this book contain pieces of the grammar that defines the formal
syntax of TEX. In this chapter the structure of the rewriting rules of the grammar is
explained, and some key notions are presented.

In the TEX book a grammar appears in Chapters 24–27. An even more rigorous gram-
mar of TEX can be found in [1]. The grammar presented in this book is virtually
identical to that of the TEX book.

36.1 Notations
Basic to the grammar are

grammatical terms These are enclosed in angle brackets:
〈term〉

control sequences These are given in typewriter type with a backslash for the escape
character:

\command

Lastly there are

keywords Also given in typewriter type
keyword

This is a limited collection of words that have a special meaning for TEX in
certain contexts; see below.

The three elements of the grammar are used in syntax rules:

〈snark〉 −→ boojum | 〈empty〉
This rule says that the grammatical entity 〈snark〉 is either the keyword boojum, or
the grammatical entity 〈empty〉.

There are two other notational conventions. The first is that the double quote is used
to indicate hexadecimal (base 16) notation. For instance "ab56 stands for 10× 163 +
11 × 162 + 5 × 161 + 6 × 160. The second convention is that subscripts are used to
denote category codes. Thus a12 denotes an ‘a’ of category 12.

277

Chapter 36. The Grammar of TEX

36.2 Keywords
A keyword is sequence of characters (or character tokens) of any category code but 13
(active). Unlike the situation in control sequences, TEX does not distinguish between
lowercase and uppercase characters in keywords. Uppercase characters in keywords are
converted to lowercase by adding 32 to them; the \lccode and \uccode are not used
here. Furthermore, any keyword can be preceded by optional spaces.

Thus both true cm and truecm are legal. By far the strangest example, however, is
provided by the grammar rule

〈fil unit〉 −→ fil | 〈fil unit〉l
which implies that fil L l is also a legal 〈fil dimen〉. Strange errors can ensue from
this; see page 131 for an example.

Here is the full list of all keywords: at, bp, by, cc, cm, dd, depth, em, ex, fil,
height, in, l, minus, mm, mu, pc, plus, pt, scaled, sp, spread, to, true, width.

36.3 Specific grammatical terms
Some grammatical terms appear in a lot of rules. One such term is 〈optional spaces〉.
It is probably clear what is meant, but here is the formal definition:

〈optional spaces〉 −→ 〈empty〉 | 〈space token〉〈optional spaces〉
which amounts to saying that 〈optional spaces〉 is zero or more space tokens.

Other terms may not be so immediately obvious. Below are some of them.

36.3.1 〈equals〉

In assignments the equals sign is optional; therefore there is a term

〈equals〉 −→ 〈optional spaces〉 | 〈optional spaces〉=12

in TEX’s grammar.

36.3.2 〈filler〉, 〈general text〉

More obscure than the 〈optional spaces〉 is the combination of spaces and \relax
tokens that is allowed in some places, for instance

\setbox0= \relax\box1

The quantity involved is

〈filler〉 −→ 〈optional spaces〉 | 〈filler〉\relax〈optional spaces〉
One important occurrence of 〈filler〉 is in

〈general text〉 −→ 〈filler〉{〈balanced text〉〈right brace〉
A 〈general text〉 follows such control sequences as \message, \uppercase, or \mark.
The braces around the 〈balanced text〉 are explained in the next point.

278 Victor Eijkhout – TEX by Topic

36.4. Differences between TEX versions 2 and 3

36.3.3 {} and 〈left brace〉〈right brace〉

The TEX grammar uses a perhaps somewhat unfortunate convention for braces. First
of all

{ and }

stand for braces that are either explicit open/close group characters, or control se-
quences defined by \let, such as

\let\bgroup={ \let\egroup=}

The grammatical terms

〈left brace〉 and 〈right brace〉
stand for explicit open/close group characters, that is, characters of categories 1 and 2
respectively.

Various combinations of these two kinds of braces exist. Braces around boxes can be
implicit:

\hbox〈box specification〉{〈horizontal mode material〉}
Around a macro definition there must be explicit braces:

〈definition text〉 −→ 〈parameter text〉〈left brace〉〈balanced text〉〈right
brace〉

Finally, the 〈general text〉 that was mentioned above has to be explicitly closed, but it
can be implicitly opened:

〈general text〉 −→ 〈filler〉{〈balanced text〉〈right brace〉
The closing brace of a 〈general text〉 has to be explicit, since a general text is a token
list, which may contain \egroup tokens. TEX performs expansion to find the opening
brace of a 〈general text〉.

36.3.4 〈math field〉

In math mode various operations such as subscripting or applying \underline take
an argument that is a 〈math field〉: either a single symbol, or a group. Here is the
exact definition.

〈math field〉 −→ 〈math symbol〉 | 〈filler〉{〈math mode material〉}
〈math symbol〉 −→ 〈character〉 | 〈math character〉

See page 46 for 〈character〉, and page 191 for 〈math character〉.

36.4 Differences between TEX versions 2 and 3
In 1989 Knuth released TEX version 3.0, which is the first real change in TEX since
version 2.0, which was released in 1986 (version 0 of TEX was released in 1982;
see [18] for more about the history of TEX). All intermediate versions were merely
bug fixes.

Victor Eijkhout – TEX by Topic 279

Chapter 36. The Grammar of TEX

The main difference between versions 2 and 3 lies in the fact that 8-bit input has
become possible. Associated with this, various quantities that used to be 127 or 128
have been raised to 255 or 256 respectively. Here is a short list. The full description
is in [20].
• All ‘codes’ (\catcode, \sfcode, et cetera; see page 49) now apply to 256

character codes instead of 128.
• A character with code \endlinechar is appended to the line unless this pa-

rameter is negative or more than 255 (this was 127) (see page 29).
• No escape character is output by \write and other commands if \escapechar

is negative or more than 255 (this was 127) (see page 35).
• The ^^ replacement mechanism has been extended (see page 32).
• Parameters \language, \inputlineno, \errorcontextlines, \lefthyphenmin,

\righthyphenmin, \badness, \holdinginserts, \emergencystretch, and
commands \noboundary, \setlanguage have been added.

• The value of \outputpenalty is no longer zero if the page break was not at
a penalty item; instead it is 10 000 (see page 227).

The plain format has also been updated, mostly with default settings for parameters
such as \lefthyphenmin, but also a few macros have been added.

280 Victor Eijkhout – TEX by Topic

Chapter 37

Glossary of TEX Primitives

This chapter gives the list of all primitives of TEX. After each control sequence the
grammatical category of the command or parameter is given, plus a short description.
For some commands the syntax of their use is given.

For parameters the class to which they belong is given. Commands that have no
grammatical category in the TEX book are denoted either ‘〈expandable command〉’ or
‘〈primitive command〉’ in this list.

Grammatical terms such as 〈equals〉 and 〈optional space〉 are explained in Chapter 36.

\- 〈horizontal command〉 Discretionary hyphen; this is equivalent to
\discretionary””{-}{}{}. Can be used to indicate hyphenatable points in
a word.

\char32 〈horizontal command〉 Control space. Insert the same amount of space as a
space token would if \spacefactor = 1000.

\char47 〈primitive command〉 Italic correction: insert a kern specified by the
preceding character. Each character has an italic correction, possibly zero,
specified in the tfm file. For slanted fonts this compensates for overhang.

\above〈dimen〉 〈generalized fraction command〉 Fraction with specified bar width.
\abovedisplayshortskip 〈glue parameter〉 Glue above a display if the line

preceding the display was short.
\abovedisplayskip 〈glue parameter〉 Glue above a display.
\abovewithdelims〈delim1〉〈delim2〉〈dimen〉 〈generalized fraction command〉

Generalized fraction with delimiters.
\accent〈8-bit number〉〈optional assignments〉〈character〉 〈horizontal

command〉 Command to place accents on characters.
\adjdemerits 〈integer parameter〉 Penalty for adjacent not visually compatible lines.

Default 10 000 in plain TEX.
\advance〈numeric variable〉〈optional by〉〈number〉 〈arithmetic assignment〉

Arithmetic command to increase or decrease a 〈numeric variable〉, that is, a
〈count variable〉, 〈dimen variable〉, 〈glue variable〉, or 〈muglue variable〉.

\afterassignment〈token〉 〈primitive command〉 Save the next token for execution
after the next assignment. Only one token can be saved this way.

281

Chapter 37. Glossary of TEX Primitives

\aftergroup〈token〉 〈primitive command〉 Save the next token for insertion after
the current group. Several tokens can be saved this way.

\atop〈dimen〉 〈generalized fraction command〉 Place objects over one another.
\atopwithdelims〈delim1〉〈delim2〉 〈generalized fraction command〉 Place objects

over one another with delimiters.
\badness 〈internal integer〉 (TEX3 only) Badness of the most recently constructed

box.
\baselineskip 〈glue parameter〉 The ‘ideal’ baseline distance between neighbouring

boxes on a vertical list; 12pt in plain TEX.
\batchmode 〈interaction mode assignment〉 TEX patches errors itself and performs an

emergency stop on serious errors such as missing input files, but no terminal
output is generated.

\begingroup 〈primitive command〉 Open a group that must be closed with
\endgroup.

\belowdisplayshortskip 〈glue parameter〉 Glue below a display if the line
preceding the display was short.

\belowdisplayskip 〈glue parameter〉 Glue below a display.
\binoppenalty 〈integer parameter〉 Penalty for breaking after a binary operator not

enclosed in a subformula. Plain TEX default: 700.
\botmark 〈expandable command〉 The last mark on the current page.
\box〈8-bit number〉 〈box〉 Use a box register, emptying it.
\boxmaxdepth 〈dimen parameter〉 Maximum allowed depth of boxes.

Default \maxdimen in plain TEX.
\brokenpenalty 〈integer parameter〉 Additional penalty for breaking a page after a

hyphenated line. Default 100 in plain TEX.
\catcode〈8-bit number〉 〈internal integer〉; the control sequence itself is

a 〈codename〉. Access category codes.
\char〈number〉 〈character〉 Explicit denotation of a character to be typeset.
\chardef〈control sequence〉〈equals〉〈number〉 〈shorthand definition〉 Define a

control sequence to be a synonym for a character code.
\cleaders 〈leaders〉 As \leaders, but with box leaders any excess space is split

into equal glue items before and after the leaders.
\closein〈4-bit number〉 〈primitive command〉 Close an input stream.
\closeout〈4-bit number〉 〈primitive command〉 Close an output stream.
\clubpenalty 〈integer parameter〉 Additional penalty for breaking a page after the

first line of a paragraph. Default 150 in plain TEX.
\copy〈8-bit number〉 〈box〉 Use a box register and retain the contents.
\count〈8-bit number〉 〈internal integer〉; the control sequence itself is a 〈register

prefix〉. Access count registers.
\countdef〈control sequence〉〈equals〉〈8-bit number〉 〈shorthand definition〉;

the control sequence itself is a 〈registerdef〉. Define a control sequence to be
a synonym for a \count register.

\cr 〈primitive command〉 Terminate an alignment line.
\crcr 〈primitive command〉 Terminate an alignment line if it has not already been

terminated by \cr.

282 Victor Eijkhout – TEX by Topic

\csname 〈expandable command〉 Start forming the name of a control sequence. Has
to be balanced with \endcsname.

\day 〈integer parameter〉 The day of the current job.
\deadcycles 〈special integer〉 Counter that keeps track of how many times the

output routine has been called without a \shipout taking place. If this
number reaches \maxdeadcycles TEX gives an error message. Plain TEX
default: 25.

\def 〈def〉 Start a macro definition.
\defaulthyphenchar 〈integer parameter〉 Value of \hyphenchar when a font is

loaded. Default value in plain TEX is ‘\-.
\defaultskewchar 〈integer parameter〉 Value of \skewchar when a font is loaded.

Default value in plain TEX is -1.
\delcode〈8-bit number〉 〈internal integer〉; the control sequence itself is

a 〈codename〉. Access the code specifying how a character should be used as
delimiter after \left or \right.

\delimiter〈27-bit number〉 〈math character〉 Explicit denotation of a delimiter.
\delimiterfactor 〈integer parameter〉 1000 times the part of a delimited formula

that should be covered by a delimiter. Plain TEX default: 901.
\delimitershortfall 〈integer parameter〉 Size of the part of a delimited formula

that is allowed to go uncovered by a delimiter. Plain TEX default: 5pt.
\dimen〈8-bit number〉 〈internal dimen〉; the control sequence itself is a 〈register

prefix〉. Access dimen registers.
\dimendef〈control sequence〉〈equals〉〈8-bit number〉 〈shorthand definition〉;

the control sequence itself is a 〈registerdef〉. Define a control sequence to be
a synonym for a \dimen register.

\discretionary{pre-break}{post-break}{no-break} 〈horizontal command〉 Specify
the way a character sequence is split up at a line break.

\displayindent 〈dimen parameter〉 Distance by which the box, in which the
display is centred, is indented owing to hanging indentation. This value is set
automatically for each display.

\displaylimits 〈primitive command〉 Restore default placement for limits.
\displaystyle 〈primitive command〉 Select the display style of math typesetting.
\displaywidowpenalty 〈integer parameter〉 Additional penalty for breaking a page

before the last line above a display formula. Default 50 in plain TEX.
\displaywidth 〈dimen parameter〉 Width of the box in which the display is centred.

This value is set automatically for each display.
\divide〈numeric variable〉〈optional by〉〈number〉 〈arithmetic assignment〉

Arithmetic command to divide a 〈numeric variable〉 (see \advance).
\doublehyphendemerits 〈integer parameter〉 Penalty for consecutive lines ending

with a hyphen. Default 10 000 in plain TEX.
\dp〈8-bit number〉 〈internal dimen〉; the control sequence itself is a 〈box

dimension〉. Depth of the box in a box register.
\dump 〈vertical command〉 Dump a format file; possible only in IniTEX, not allowed

inside a group.
\edef 〈def〉 Start a macro definition; the replacement text is expanded at definition

time.

Victor Eijkhout – TEX by Topic 283

Chapter 37. Glossary of TEX Primitives

\else 〈expandable command〉 Select 〈false text〉 of a conditional or default case of
\ifcase.

\emergencystretch 〈dimen parameter〉 (TEX3 only) Assumed extra stretchability in
lines of a paragraph in third pass of the line-breaking algorithm.

\end 〈vertical command〉 End this run.
\endcsname 〈expandable command〉 Delimit the name of a control sequence that

was begun with \csname.
\endgroup 〈primitive command〉 End a group that was opened with \begingroup.
\endinput 〈expandable command〉 Terminate inputting the current file after the

current line.
\endlinechar 〈integer parameter〉 The character code of the end-of-line character

appended to input lines. IniTEX default: 13.
\eqno〈math mode material〉$$ 〈eqno〉 Place a right equation number in a display

formula.
\errhelp 〈token parameter〉 Tokens that will be displayed if the user asks for help

after an \errmessage.
\errmessage〈general text〉 〈primitive command〉 Report an error and give the

user opportunity to act.
\errorcontextlines 〈integer parameter〉 (TEX3 only) Number of additional context

lines shown in error messages.
\errorstopmode 〈interaction mode assignment〉 Ask for user input on the

occurrence of an error.
\escapechar 〈integer parameter〉 Number of the character that is used when control

sequences are being converted into character tokens. IniTEX default: 92.
\everycr 〈token parameter〉 Token list inserted after every \cr or non-redundant

\crcr.
\everydisplay 〈token parameter〉 Token list inserted at the start of a display.
\everyhbox 〈token parameter〉 Token list inserted at the start of a horizontal box.
\everyjob 〈token parameter〉 Token list inserted at the start of each job.
\everymath 〈token parameter〉 Token list inserted at the start of non-display math.
\everypar 〈token parameter〉 Token list inserted in front of paragraph text.
\everyvbox 〈token parameter〉 Token list inserted at the start of a vertical box.
\exhyphenpenalty 〈integer parameter〉 Penalty for breaking a horizontal line at a

discretionary in the special case where the prebreak text is empty. Default 50
in plain TEX.

\expandafter 〈expandable command〉 Take the next two tokens and place the
expansion of the second after the first.

\fam 〈integer parameter〉 The number of the current font family.
\fi 〈expandable command〉 Closing delimiter for all conditionals.
\finalhyphendemerits 〈integer parameter〉 Penalty added when the penultimate

line of a paragraph ends with a hyphen. Plain TEX default 5000.
\firstmark 〈expandable command〉 The first mark on the current page.
\floatingpenalty 〈integer parameter〉 Penalty amount added to

\insertpenalties when an insertion is split.

284 Victor Eijkhout – TEX by Topic

\font〈control sequence〉〈equals〉〈file name〉〈at clause〉 〈simple assignment〉
Associate a control sequence with a tfm file. When used on its own, this
control sequence is a 〈font〉, denoting the current font.

\fontdimen〈number〉〈font〉 〈internal dimen〉 Access various parameters of fonts.
\fontname〈font〉 〈primitive command〉 The external name of a font.
\futurelet〈control sequence〉〈token1〉〈token2〉 〈let assignment〉 Assign the

meaning of 〈token2〉 to the 〈control sequence〉.
\gdef 〈def〉 Synonym for \global\def.
\global 〈prefix〉 Make the next definition, arithmetic statement, or assignment

global.
\globaldefs 〈integer parameter〉 Override \global specifications: a positive value

of this parameter makes all assignments global, a negative value makes them
local.

\halign〈box specification〉{〈alignment material〉} 〈vertical command〉
Horizontal alignment. Display alignment:

$$\halign〈box specification〉{...}〈optional assignments〉$$
\hangafter 〈integer parameter〉 If positive, this denotes the number of lines before

indenting starts; if negative, its absolute value is the number of indented lines
starting with the first line of the paragraph. The default value of 1 is restored
after every paragraph.

\hangindent 〈dimen parameter〉 If positive, this indicates indentation from the left
margin; if negative, this is the negative of the indentation from the right
margin. The default value of 0pt is restored after every paragraph.

\hbadness 〈integer parameter〉 Threshold below which TEX does not report an
underfull or overfull horizontal box. Plain TEX default: 1000.

\hbox〈box specification〉{〈horizontal material〉} 〈box〉 Construct a
horizontal box.

\hfil 〈horizontal command〉 Horizontal skip equivalent to \hskip 0cm plus 1fil.
\hfill 〈horizontal command〉 Horizontal skip equivalent to

\hskip 0cm plus 1fill.
\hfilneg 〈horizontal command〉 Horizontal skip equivalent to

\hskip 0cm minus 1fil.
\hfuzz 〈dimen parameter〉 Excess size that TEX tolerates before it considers a

horizontal box overfull. Plain TEX default: 0.1pt.
\hoffset 〈dimen parameter〉 Distance by which the page is shifted to the right of

the reference point which is at one inch from the left margin.
\holdinginserts 〈integer parameter〉 (only TEX3) If this is positive, insertions are

not placed in their boxes when the \output tokens are inserted.
\hrule 〈vertical command〉 Rule that spreads in horizontal direction.
\hsize 〈dimen parameter〉 Line width used for text typesetting inside a vertical box.
\hskip〈glue〉 〈horizontal command〉 Insert in horizontal mode a glue item.
\hss 〈horizontal command〉 Horizontal skip equivalent to

\hskip 0cm plus 1fil minus 1fil.
\ht〈8-bit number〉 〈internal dimen〉; the control sequence itself is a 〈box

dimension〉. Height of the box in a box register.

Victor Eijkhout – TEX by Topic 285

Chapter 37. Glossary of TEX Primitives

\hyphenation〈general text〉 〈hyphenation assignment〉 Define hyphenation
exceptions for the current value of \language.

\hyphenchar〈font〉 〈internal integer〉 Number of the character behind which a
\discretionary{}{}{} is inserted.

\hyphenpenalty 〈integer parameter〉 Penalty associated with break at a discretionary
in the general case. Default 50 in plain TEX.

\if〈token1〉〈token2〉 〈expandable command〉 Test equality of character codes.
\ifcase〈number〉〈case0〉\or...\or〈casen〉\else〈other cases〉\fi 〈expandable

command〉 Enumerated case statement.
\ifcat〈token1〉〈token2〉 〈expandable command〉 Test whether two characters have

the same category code.
\ifdim〈dimen1〉〈relation〉〈dimen2〉 〈expandable command〉 Compare two

dimensions.
\ifeof〈4-bit number〉 〈expandable command〉 Test whether a file has been fully

read, or does not exist.
\iffalse 〈expandable command〉 This test is always false.
\ifhbox〈8-bit number〉 〈expandable command〉 Test whether a box register

contains a horizontal box.
\ifhmode 〈expandable command〉 Test whether the current mode is (possibly

restricted) horizontal mode.
\ifinner 〈expandable command〉 Test whether the current mode is an internal mode.
\ifmmode 〈expandable command〉 Test whether the current mode is (possibly

display) math mode.
\ifnum〈number1〉〈relation〉〈number2〉 〈expandable command〉 Test relations

between numbers.
\ifodd〈number〉 〈expandable command〉 Test whether a number is odd.
\iftrue 〈expandable command〉 This test is always true.
\ifvbox〈8-bit number〉 〈expandable command〉 Test whether a box register

contains a vertical box.
\ifvmode 〈expandable command〉 Test whether the current mode is (possibly

internal) vertical mode.
\ifvoid〈8-bit number〉 〈expandable command〉 Test whether a box register is

empty.
\ifx〈token1〉〈token2〉 〈expandable command〉 Test equality of macro expansion, or

equality of character code and category code.
\ignorespaces 〈primitive command〉 Expands following tokens until something

other than a 〈space token〉 is found.
\immediate 〈primitive command〉 Prefix to have output operations executed right

away.
\indent 〈primitive command〉 Switch to horizontal mode and insert box with width

\parindent. This command is automatically inserted before a 〈horizontal
command〉 in vertical mode.

\input〈file name〉 〈expandable command〉 Read a specified file as TEX input.
\inputlineno 〈internal integer〉 (TEX3 only) Number of the current input line.
\insert〈8-bit number〉{〈vertical mode material〉} 〈primitive command〉 Start

an insertion item.

286 Victor Eijkhout – TEX by Topic

\insertpenalties 〈special integer〉 Total of penalties for split insertions. Inside the
output routine the number of held-over insertions.

\interlinepenalty 〈integer parameter〉 Penalty for breaking a page between lines
of a paragraph. Default 0 in plain TEX.

\jobname 〈expandable command〉 Name of the main TEX file being processed.
\kern〈dimen〉 〈kern〉 Add a kern item of the specified 〈dimen〉 to the list; this can

be used both in horizontal and vertical mode.
\language 〈integer parameter〉 (TEX3 only) Choose a set of hyphenation patterns

and exceptions.
\lastbox 〈box〉 Register containing the last element added to the current list, if this

was a box.
\lastkern 〈internal dimen〉 If the last item on the list was a kern, the size of this.
\lastpenalty 〈internal integer〉 If the last item on the list was a penalty, the value

of this.
\lastskip 〈internal glue〉 or 〈internal muglue〉. If the last item on the list was a

skip, the size of this.
\lccode〈8-bit number〉 〈internal integer〉; the control sequence itself is

a 〈codename〉. Access the character code that is the lowercase variant of a
given code.

\leaders〈box or rule〉〈vertical/horizontal/mathematical skip〉 〈leaders〉
Fill a specified amount of space with a rule or copies of box.

\left 〈primitive command〉 Use the following character as an open delimiter.
\lefthyphenmin 〈integer parameter〉 (TEX3 only) Minimum number of characters

before a hyphenation.
\leftskip 〈glue parameter〉 Glue that is placed to the left of all lines.
\leqno〈math mode material〉$$ 〈eqno〉 Place a left equation number in a display

formula.
\let〈control sequence〉〈equals〉〈token〉 〈let assignment〉 Define a control

sequence to a token, assign its meaning if the token is a command or macro.
\limits 〈primitive command〉 Place limits over and under a large operator. This is

the default position in display style.
\linepenalty 〈integer parameter〉 Penalty value associated with each line break.

Default 10 in plain TEX.
\lineskip 〈glue parameter〉 Glue added if distance between bottom and top of

neighbouring boxes is less than \lineskiplimit. Default 1pt in plain TEX.
\lineskiplimit 〈dimen parameter〉 Distance to be maintained between the bottom

and top of neighbouring boxes on a vertical list. Default 0pt in plain TEX.
\long 〈prefix〉 Indicate that the arguments of the macro to be defined are allowed to

contain \par tokens.
\looseness 〈integer parameter〉 Number of lines by which this paragraph has to be

made longer (or, if negative, shorter) than it would be ideally.
\lower〈dimen〉〈box〉 〈primitive command〉 Adjust vertical positioning of a box in

horizontal mode.
\lowercase〈general text〉 〈primitive command〉 Convert the argument to its

lowercase form.

Victor Eijkhout – TEX by Topic 287

Chapter 37. Glossary of TEX Primitives

\mag 〈integer parameter〉 1000 times the magnification of the document. Default
1000 in IniTEX.

\mark〈general text〉 〈primitive command〉 Specify a mark text.
\mathaccent〈15-bit number〉〈math field〉 〈primitive command〉 Place an accent

in math mode.
\mathbin〈math field〉 〈math atom〉 Let the following 〈math field〉 function as a

binary operation.
\mathchar〈15-bit number〉 〈primitive command〉 Explicit denotation of a

mathematical character.
\mathchardef〈control sequence〉〈equals〉〈15-bit number〉 〈shorthand

definition〉 Define a control sequence to be a synonym for a math character
code.

\mathchoice{D}{T}{S}{SS} 〈primitive command〉 Give four variants of a formula
for the four styles of math typesetting.

\mathclose〈math field〉 〈math atom〉 Let the following 〈math field〉 function as a
closing symbol.

\mathcode〈8-bit number〉 〈internal integer〉; the control sequence itself is
a 〈codename〉. Code of a character determining its treatment in math mode.

\mathinner〈math field〉 〈math atom〉 Let the following 〈math field〉 function as
an inner formula.

\mathop〈math field〉 〈math atom〉 Let the following 〈math field〉 function as a
large operator.

\mathopen〈math field〉 〈math atom〉 Let the following 〈math field〉 function as an
opening symbol.

\mathord〈math field〉 〈math atom〉 Let the following 〈math field〉 function as an
ordinary object.

\mathpunct〈math field〉 〈math atom〉 Let the following 〈math field〉 function as a
punctuation symbol.

\mathrel〈math field〉 〈math atom〉 Let the following 〈math field〉 function as a
relation.

\mathsurround 〈dimen parameter〉 Kern amount placed before and after in-line
formulas.

\maxdeadcycles 〈integer parameter〉 The maximum number of times that the output
routine is allowed to be called without a \shipout occurring. IniTEX
default: 25.

\maxdepth 〈dimen parameter〉 Maximum depth of the page box. Default 4pt in
plain TEX.

\meaning 〈expandable command〉 Give the meaning of a control sequence as a
string of characters.

\medmuskip 〈muglue parameter〉 Medium amount of mu glue. Default value in plain
TEX: 4mu plus 2mu minus 4mu

\message〈general text〉 〈primitive command〉 Write a message to the terminal.
\mkern 〈primitive command〉 Insert a kern measured in mu units.
\month 〈integer parameter〉 The month of the current job.
\moveleft〈dimen〉〈box〉 〈primitive command〉 Adjust horizontal positioning of a box

in vertical mode.

288 Victor Eijkhout – TEX by Topic

\moveright〈dimen〉〈box〉 〈primitive command〉 Adjust horizontal positioning of a
box in vertical mode.

\mskip 〈mathematical skip〉 Insert glue measured in mu units.
\multiply〈numeric variable〉〈optional by〉〈number〉 〈arithmetic assignment〉

Arithmetic command to multiply a 〈numeric variable〉 (see \advance).
\muskip〈8-bit number〉 〈internal muglue〉; the control sequence itself is a 〈register

prefix〉. Access skips measured in mu units.
\muskipdef〈control sequence〉〈equals〉〈8-bit number〉 〈shorthand definition〉;

the control sequence itself is a 〈registerdef〉. Define a control sequence to be
a synonym for a \muskip register.

\newlinechar 〈integer parameter〉 Number of the character that triggers a new line
in \write statements. Plain TEX default −1.

\noalign〈filler〉{〈vertical (horizontal) mode material〉} 〈primitive
command〉 Specify vertical (horizontal) material to be placed in between
rows (columns) of an \halign (\valign).

\noboundary 〈horizontal command〉 (TEX3 only) Omit implicit boundary character.
\noexpand〈token〉 〈expandable command〉 Do not expand the next token.
\noindent 〈primitive command〉 Switch to horizontal mode with an empty

horizontal list.
\nolimits 〈primitive command〉 Place limits of a large operator as subscript and

superscript expressions. This is the default position in text style.
\nonscript 〈primitive command〉 Cancel the next glue item if it occurs in

scriptstyle or scriptscriptstyle.
\nonstopmode 〈interaction mode assignment〉 TEX fixes errors as best it can, and

performs an emergency stop when user interaction is needed.
\nulldelimiterspace 〈dimen parameter〉 Width taken for empty delimiters.

Default 1.2pt in plain TEX.
\nullfont 〈fontdef token〉 Name of an empty font that TEX uses in emergencies.
\number〈number〉 〈expandable command〉 Convert a 〈number〉 to decimal

representation.
\omit 〈primitive command〉 Omit the template for one alignment entry.
\openin〈4-bit number〉〈equals〉〈filename〉 〈primitive command〉 Open a stream

for input.
\openout〈4-bit number〉〈equals〉〈filename〉 〈primitive command〉 Open a stream

for output.
\or 〈primitive command〉 Separator for entries of an \ifcase.
\outer 〈prefix〉 Indicate that the macro being defined should occur on the outer

level only.
\output 〈token parameter〉 Token list with instructions for shipping out pages.
\outputpenalty 〈integer parameter〉 Value of the penalty at the current page break,

or 10 000 if the break was not at a penalty.
\over 〈generalized fraction command〉 Fraction.
\overfullrule 〈dimen parameter〉 Width of the rule that is printed to indicate

overfull horizontal boxes. Plain TEX default: 5pt.
\overline〈math field〉 〈math atom〉 Overline the following 〈math field〉.

Victor Eijkhout – TEX by Topic 289

Chapter 37. Glossary of TEX Primitives

\overwithdelims〈delim1〉〈delim2〉 〈generalized fraction command〉 Fraction with
delimiters.

\pagedepth 〈special dimen〉 Depth of the current page.
\pagefilllstretch 〈special dimen〉 Accumulated third-order stretch of the current

page.
\pagefillstretch 〈special dimen〉 Accumulated second-order stretch of the current

page.
\pagefilstretch 〈special dimen〉 Accumulated first-order stretch of the current

page.
\pagegoal 〈special dimen〉 Goal height of the page box. This starts at \vsize, and

is diminished by heights of insertion items.
\pageshrink 〈special dimen〉 Accumulated shrink of the current page.
\pagestretch 〈special dimen〉 Accumulated zeroth-order stretch of the current page.
\pagetotal 〈special dimen〉 Accumulated natural height of the current page.
\par 〈primitive command〉 Close off a paragraph and go into vertical mode.
\parfillskip 〈glue parameter〉 Glue that is placed between the last element of the

paragraph and the line end. Plain TEX default: 0pt plus 1fil.
\parindent 〈dimen parameter〉 Size of the indentation box added in front of a

paragraph.
\parshape 〈internal integer〉 Command for general paragraph shapes:

\parshape〈equals〉n i1 `1 . . . in `n

specifies a number of lines n, and n pairs of an indentation and line length.
\parskip 〈glue parameter〉 Amount of glue added to vertical list when a paragraph

starts; default value 0pt plus 1pt in plain TEX.
\patterns〈general text〉 〈hyphenation assignment〉 Define a list of hyphenation

patterns for the current value of \language; allowed only in IniTEX.
\pausing 〈integer parameter〉 Specify that TEX should pause after each line that is

read from a file.
\penalty 〈primitive command〉 Specify desirability of not breaking at this point.
\postdisplaypenalty 〈integer parameter〉 Penalty placed in the vertical list below

a display.
\predisplaypenalty 〈integer parameter〉 Penalty placed in the vertical list above a

display. Plain TEX default: 10 000.
\predisplaysize 〈dimen parameter〉 Effective width of the line preceding the

display.
\pretolerance 〈integer parameter〉 Tolerance value for a paragraph that uses no

hyphenation. Default 100 in plain TEX.
\prevdepth 〈special dimen〉 Depth of the last box added to a vertical list as it is

perceived by TEX.
\prevgraf 〈special integer〉 The number of lines in the paragraph last added to the

vertical list.
\radical〈24-bit number〉 〈primitive command〉 Command for setting things such

as root signs.
\raise〈dimen〉〈box〉 〈primitive command〉 Adjust vertical positioning of a box in

horizontal mode.

290 Victor Eijkhout – TEX by Topic

\read〈number〉to〈control sequence〉 〈simple assignment〉 Read a line from a
stream into a control sequence.

\relax 〈primitive command〉 Do nothing.
\relpenalty 〈integer parameter〉 Penalty for breaking after a binary relation, not

enclosed in a subformula. Plain TEX default: 500.
\right 〈primitive command〉 Use the following character as a closing delimiter.
\righthyphenmin 〈integer parameter〉 (TEX3 only) Minimum number of characters

after a hyphenation.
\rightskip 〈glue parameter〉 Glue that is placed to the right of all lines.
\romannumeral〈number〉 〈expandable command〉 Convert a positive 〈number〉 to

lowercase roman representation.
\scriptfont〈4-bit number〉 〈family member〉; the control sequence itself is

a 〈font range〉. Access the scriptfont of a family.
\scriptscriptfont〈4-bit number〉 〈family member〉; the control sequence itself

is a 〈font range〉. Access the scriptscriptfont of a family.
\scriptscriptstyle 〈primitive command〉 Select the scriptscript style of math

typesetting.
\scriptspace 〈dimen parameter〉 Extra space after subscripts and superscripts.

Default .5pt in plain TEX.
\scriptstyle 〈primitive command〉 Select the script style of math typesetting.
\scrollmode 〈interaction mode assignment〉 TEX patches errors itself, but will ask

the user for missing files.
\setbox〈8-bit number〉〈equals〉〈box〉 〈simple assignment〉 Assign a box to a box

register.
\setlanguage〈number〉 〈primitive command〉 (TEX3 only) Insert a whatsit resetting

the current language to the 〈number〉 specified.
\sfcode〈8-bit number〉 〈internal integer〉; the control sequence itself is

a 〈codename〉. Access the value of the \spacefactor associated with a
character.

\shipout〈box〉 〈primitive command〉 Ship a box to the dvi file.
\show〈token〉 〈primitive command〉 Display the meaning of a token on the screen.
\showbox〈8-bit number〉 〈primitive command〉 Write the contents of a box to the

log file.
\showboxbreadth 〈integer parameter〉 Number of successive elements that are

shown when \tracingoutput is positive, each time a level is visited. Plain
TEX default: 5.

\showboxdepth 〈integer parameter〉 The number of levels that are shown when
\tracingoutput is positive. Plain TEX default: 3.

\showlists 〈primitive command〉 Write to the log file the contents of the partial
lists currently built in all modes.

\showthe〈internal quantity〉 〈primitive command〉 Display on the terminal the
result of prefixing a token with \the.

\skewchar〈font〉 〈internal integer〉 Font position of an after-placed accent.
\skip〈8-bit number〉 〈internal glue〉; the control sequence itself is a 〈register

prefix〉. Access skip registers

Victor Eijkhout – TEX by Topic 291

Chapter 37. Glossary of TEX Primitives

\skipdef〈control sequence〉〈equals〉〈8-bit number〉 〈shorthand definition〉; the
control sequence itself is a 〈registerdef〉. Define a control sequence to be a
synonym for a \skip register.

\spacefactor 〈special integer〉 1000 times the ratio by which the stretch component
of the interword glue should be multiplied.

\spaceskip 〈glue parameter〉 Interword glue if non-zero.
\span 〈primitive command〉 Join two adjacent alignment entries, or (in preamble)

expand the next token.
\special〈general text〉 〈primitive command〉 Write a token list to the dvi file.
\splitbotmark 〈expandable command〉 The last mark on a split-off page.
\splitfirstmark 〈expandable command〉 The first mark on a split-off page.
\splitmaxdepth 〈dimen parameter〉 Maximum depth of a box split off by a

\vsplit operation. Default 4pt in plain TEX.
\splittopskip 〈glue parameter〉 Minimum distance between the top of what

remains after a \vsplit operation, and the first item in that box.
Default 10pt in plain TEX.

\string〈token〉 〈expandable command〉 Convert a token to a string of one or more
characters.

\tabskip 〈glue parameter〉 Amount of glue in between columns (rows) of an
\halign (\valign).

\textfont〈4-bit number〉 〈family member〉; the control sequence itself is a 〈font
range〉. Access the textfont of a family.

\textstyle 〈primitive command〉 Select the text style of math typesetting.
\the〈internal quantity〉 〈primitive command〉 Expand the value of various

quantities in TEX into a string of (character) tokens.
\thickmuskip 〈muglue parameter〉 Large amount of mu glue. Default value in plain

TEX: 5mu plus 5mu.
\thinmuskip 〈muglue parameter〉 Small amount of mu glue. Default value in plain

TEX: 3mu.
\time 〈integer parameter〉 Number of minutes after midnight that the current job

started.
\toks〈8-bit number〉 〈register prefix〉 Access a token list register.
\toksdef〈control sequence〉〈equals〉〈8-bit number〉 〈shorthand definition〉; the

control sequence itself is a 〈registerdef〉. Assign a control sequence to
a \toks register.

\tolerance 〈integer parameter〉 Tolerance value for lines in a paragraph that does
use hyphenation. Default 200 in plain TEX, 10 000 in IniTEX.

\topmark 〈expandable command〉 The last mark of the previous page.
\topskip 〈glue parameter〉 Minimum distance between the top of the page box and

the baseline of the first box on the page. Default 10pt in plain TEX.
\tracingcommands 〈integer parameter〉 When this is 1, TEX displays primitive

commands executed; when this is 2 or more the outcome of conditionals is
also recorded.

\tracinglostchars 〈integer parameter〉 If this parameter is positive, TEX gives
diagnostic messages whenever a character is accessed that is not present in a
font. Plain TEX default: 1.

292 Victor Eijkhout – TEX by Topic

\tracingmacros 〈integer parameter〉 If this is 1, the log file shows expansion of
macros that are performed and the actual values of the arguments; if this is
2 or more 〈token parameter〉s such as \output and \everypar are also
traced.

\tracingonline 〈integer parameter〉 If this parameter is positive, TEX will write
trace information also to the terminal.

\tracingoutput 〈integer parameter〉 If this parameter is positive, the log file shows
a dump of boxes that are shipped to the dvi file.

\tracingpages 〈integer parameter〉 If this parameter is positive, TEX generates a
trace of the page-breaking algorithm.

\tracingparagraphs 〈integer parameter〉 If this parameter is positive, TEX
generates a trace of the line-breaking algorithm.

\tracingrestores 〈integer parameter〉 If this parameter is positive, TEX will report
all values that are restored when a group level ends.

\tracingstats 〈integer parameter〉 If this parameter is positive, TEX reports at the
end of the job the usage of various internal arrays.

\uccode〈8-bit number〉 〈internal integer〉; the control sequence itself is
a 〈codename〉. Access the character code that is the uppercase variant of a
given code.

\uchyph 〈integer parameter〉 Positive if hyphenating words starting with a capital
letter is allowed. Plain TEX default 1.

\underline〈math field〉 〈math atom〉 Underline the following 〈math field〉.
\unhbox〈8-bit number〉 〈horizontal command〉 Unpack a box register containing a

horizontal box, appending the contents to the list, and emptying the register.
\unhcopy〈8-bit number〉 〈horizontal command〉 The same as \unhbox, but do not

empty the register.
\unkern 〈primitive command〉 Remove the last item of the list if this was a kern.
\unpenalty 〈primitive command〉 Remove the last item of the list if this was a

penalty.
\unskip 〈primitive command〉 Remove the last item of the list if this was a skip.
\unvbox〈8-bit number〉 〈vertical command〉 Unpack a box register containing a

vertical box, appending the contents to the list, and emptying the register.
\unvcopy〈8-bit number〉 〈vertical command〉 The same as \unvbox, but do not

empty the register.
\uppercase〈general text〉 〈primitive command〉 Convert the argument to its

uppercase form.
\vadjust〈filler〉{〈vertical mode material〉} 〈primitive command〉 Specify in

horizontal mode material for the enclosing vertical list.
\valign〈box specification〉{〈alignment material〉} 〈horizontal command〉

Vertical alignment.
\vbadness 〈integer parameter〉 Threshold below which overfull and underfull vertical

boxes are not shown. Plain TEX default: 1000.
\vbox〈box specification〉{〈vertical material〉} 〈primitive command〉

Construct a vertical box with reference point on the last item.
\vcenter〈box specification〉{〈vertical material〉} 〈primitive command〉

Construct a vertical box vertically centred on the math axis.

Victor Eijkhout – TEX by Topic 293

Chapter 37. Glossary of TEX Primitives

\vfil 〈vertical command〉 Vertical skip equivalent to \vskip 0cm plus 1fil.
\vfill 〈vertical command〉 Vertical skip equivalent to \vskip 0cm plus 1fill.
\vfilneg 〈vertical command〉 Vertical skip equivalent to \vskip 0cm minus 1fil.
\vfuzz 〈dimen parameter〉 Excess size that TEX tolerates before it considers a

vertical box overfull. Plain TEX default: 0.1pt.
\voffset 〈dimen parameter〉 Distance by which the page is shifted down from the

reference point, which is one inch from the top of the page.
\vrule 〈horizontal command〉 Rule that spreads in vertical direction.
\vsize 〈dimen parameter〉 Height of the page box.
\vskip〈glue〉 〈vertical command〉 Insert in vertical mode a glue item.
\vsplit〈8-bit number〉to〈dimen〉 〈primitive command〉 Split off the top part of a

vertical box.
\vss 〈vertical command〉 Vertical skip equivalent to

\vskip 0cm plus 1fil minus 1fil.
\vtop〈box specification〉{〈vertical material〉} 〈primitive command〉

Construct a vertical box with reference point on the first item.
\wd〈8-bit number〉 〈internal dimen〉; the control sequence itself is a 〈box

dimension〉. Width of the box in a box register.
\widowpenalty 〈integer parameter〉 Additional penalty for breaking a page before

the last line of a paragraph. Default 150 in plain TEX.
\write〈number〉〈general text〉 〈primitive command〉 Generate a whatsit item

containing a token list to be written to the terminal or to a file.
\xdef 〈def〉 Synonym for \global\edef.
\xleaders 〈leaders〉 As \leaders, but with box leaders any excess space is spread

equally between the boxes.
\xspaceskip 〈glue parameter〉 Interword glue if non-zero and

\spacefactor ≥ 2000.
\year 〈integer parameter〉 The year of the current job.

294 Victor Eijkhout – TEX by Topic

Chapter 38

Tables

295

38.1 Character tables
ASCII CONTROL CODES

dec
CHAR

hex oct
b7

b6
b5

0
0

0

0
0

1

0
1

0

0
1

1

1
0

0

1
0

1

1
1

0

1
1

1
BITS

b4 b3 b2 b1
CONTROL

SYMBOLS
NUMBERS

UPPERCASE LOWERCASE

0 0 0 0
0

NUL0 0
16

DLE10 20
32

SP20 40
48

030 60
64

@40 100
80

P50 120
96

‘60 140
112

p70 160

0 0 0 1
1

SOH1 1
17

DC111 21
33

!21 41
49

131 61
65

A41 101
81

Q51 121
97

a61 141
113

q71 161

0 0 1 0
2

STX2 2
18

DC212 22
34

”22 42
50

232 62
66

B42 102
82

R52 122
98

b62 142
114

r72 162

0 0 1 1
3

ETX3 3
19

DC313 23
35

#23 43
51

333 63
67

C43 103
83

S53 123
99

c63 143
115

s73 163

0 1 0 0
4

EOT4 4
20

DC414 24
36

$24 44
52

434 64
68

D44 104
84

T54 124
100

d64 144
116

t74 164

0 1 0 1
5

ENQ5 5
21

NAK15 25
37

%25 45
53

535 65
69

E45 105
85

U55 125
101

e65 145
117

u75 165

0 1 1 0
6

ACK6 6
22

SYN16 26
38

&26 46
54

636 66
70

F46 106
86

V56 126
102

f66 146
118

v76 166

0 1 1 1
7

BEL7 7
23

ETB17 27
39

’27 47
55

737 67
71

G47 107
87

W57 127
103

g67 147
119

w77 167

1 0 0 0
8

BS8 10
24

CAN18 30
40

(28 50
56

838 70
72

H48 110
88

X58 130
104

h68 150
120

x78 170

1 0 0 1
9

HT9 11
25

EM19 31
41

)29 51
57

939 71
73

I49 111
89

Y59 131
105

i69 151
121

y79 171

1 0 1 0
10

LFA 12
26

SUB1A 32
42

*2A 52
58

:3A 72
74

J4A 112
90

Z5A 132
106

j6A 152
122

z7A 172

1 0 1 1
11

VTB 13
27

ESC1B 33
43

+2B 53
59

;3B 73
75

K4B 113
91

[5B 133
107

k6B 153
123{7B 173

1 1 0 0
12

FFC 14
28

FS1C 34
44

,2C 54
60

<3C 74
76

L4C 114
92 \5C 134

108
l6C 154

124|7C 174

1 1 0 1
13

CRD 15
29

GS1D 35
45 −2D 55

61
=3D 75

77
M4D 115

93
]5D 135

109
m6D 155

125}7D 175

1 1 1 0
14

SOE 16
30

RS1E 36
46

.2E 56
62

>3E 76
78

N4E 116
94

ˆ5E 136
110

n6E 156
126

˜7E 176

1 1 1 1
15

SIF 17
31

US1F 37
47

/2F 57
63

?3F 77
79

O4F 117
95

˙5F 137
111

o6F 157
127

DEL7F 177

296

TEX CHARACTER CODES
dec
CHAR

hex oct

b7
b6

b5

0
0

0

0
0

1

0
1

0

0
1

1

1
0

0

1
0

1

1
1

0

1
1

1
BITS

b4 b3 b2 b1
CONTROL

SYMBOLS
NUMBERS

UPPERCASE LOWERCASE

0 0 0 0
0

ˆˆ@0 0
16

ˆˆP10 20
32

SP20 40
48

030 60
64

@40 100
80

P50 120
96

‘60 140
112

p70 160

0 0 0 1
1

ˆˆA1 1
17

ˆˆQ11 21
33

!21 41
49

131 61
65

A41 101
81

Q51 121
97

a61 141
113

q71 161

0 0 1 0
2

ˆˆB2 2
18

ˆˆR12 22
34

”22 42
50

232 62
66

B42 102
82

R52 122
98

b62 142
114

r72 162

0 0 1 1
3

ˆˆC3 3
19

ˆˆS13 23
35

#23 43
51

333 63
67

C43 103
83

S53 123
99

c63 143
115

s73 163

0 1 0 0
4

ˆˆD4 4
20

ˆˆT14 24
36

$24 44
52

434 64
68

D44 104
84

T54 124
100

d64 144
116

t74 164

0 1 0 1
5

ˆˆE5 5
21

ˆˆU15 25
37

%25 45
53

535 65
69

E45 105
85

U55 125
101

e65 145
117

u75 165

0 1 1 0
6

ˆˆF6 6
22

ˆˆV16 26
38

&26 46
54

636 66
70

F46 106
86

V56 126
102

f66 146
118

v76 166

0 1 1 1
7

ˆˆG7 7
23

ˆˆW17 27
39

’27 47
55

737 67
71

G47 107
87

W57 127
103

g67 147
119

w77 167

1 0 0 0
8

ˆˆH8 10
24

ˆˆX18 30
40

(28 50
56

838 70
72

H48 110
88

X58 130
104

h68 150
120

x78 170

1 0 0 1
9

ˆˆI9 11
25

ˆˆY19 31
41

)29 51
57

939 71
73

I49 111
89

Y59 131
105

i69 151
121

y79 171

1 0 1 0
10

ˆˆJA 12
26

ˆˆZ1A 32
42

*2A 52
58

:3A 72
74

J4A 112
90

Z5A 132
106

j6A 152
122

z7A 172

1 0 1 1
11

ˆˆKB 13
27

ˆˆ[1B 33
43

+2B 53
59

;3B 73
75

K4B 113
91

[5B 133
107

k6B 153
123{7B 173

1 1 0 0
12

ˆˆLC 14
28

ˆˆ\1C 34
44

,2C 54
60

<3C 74
76

L4C 114
92 \5C 134

108
l6C 154

124|7C 174

1 1 0 1
13

ˆˆMD 15
29

ˆˆ]1D 35
45 −2D 55

61
=3D 75

77
M4D 115

93
]5D 135

109
m6D 155

125}7D 175

1 1 1 0
14

ˆˆNE 16
30

ˆˆˆ1E 36
46

.2E 56
62

>3E 76
78

N4E 116
94

ˆ5E 136
110

n6E 156
126

˜7E 176

1 1 1 1
15

ˆˆOF 17
31

ˆˆ1F 37
47

/2F 57
63

?3F 77
79

O4F 117
95

˙5F 137
111

o6F 157
127

ˆˆ?7F 177

297

38.2 Computer modern fonts
COMPUTER MODERN ROMAN FONT LAYOUT

0
Γ0 0

16
ı10 20

32
 20 40

48
030 60

64
@40 100

80
P50 120

96
‘60 140

112
p70 160

1
∆1 1

17
11 21

33
!21 41

49
131 61

65
A41 101

81
Q51 121

97
a61 141

113
q71 161

2
Θ2 2

18
`12 22

34
”22 42

50
232 62

66
B42 102

82
R52 122

98
b62 142

114
r72 162

3
Λ3 3

19
´13 23

35
#23 43

51
333 63

67
C43 103

83
S53 123

99
c63 143

115
s73 163

4
Ξ4 4

20
ˇ14 24

36
$24 44

52
434 64

68
D44 104

84
T54 124

100
d64 144

116
t74 164

5
Π5 5

21
˘15 25

37
%25 45

53
535 65

69
E45 105

85
U55 125

101
e65 145

117
u75 165

6
Σ6 6

22
¯16 26

38
&26 46

54
636 66

70
F46 106

86
V56 126

102
f66 146

118
v76 166

7
Υ7 7

23
˚17 27

39
’27 47

55
737 67

71
G47 107

87
W57 127

103
g67 147

119
w77 167

8
Φ8 10

24
¸18 30

40
(28 50

56
838 70

72
H48 110

88
X58 130

104
h68 150

120
x78 170

9
Ψ9 11

25
ß19 31

41
)29 51

57
939 71

73
I49 111

89
Y59 131

105
i69 151

121
y79 171

10
ΩA 12

26
æ1A 32

42
*2A 52

58
:3A 72

74
J4A 112

90
Z5A 132

106
j6A 152

122
z7A 172

11
ffB 13

27
œ1B 33

43
+2B 53

59
;3B 73

75
K4B 113

91
[5B 133

107
k6B 153

123
–7B 173

12
fiC 14

28
ø1C 34

44
,2C 54

60
¡3C 74

76
L4C 114

92
“5C 134

108
l6C 154

124
—7C 174

13
flD 15

29
Æ1D 35

45
-2D 55

61
=3D 75

77
M4D 115

93
]5D 135

109
m6D 155

125
˝7D 175

14
ffiE 16

30
Œ1E 36

46
.2E 56

62
¿3E 76

78
N4E 116

94
ˆ5E 136

110
n6E 156

126
˜7E 176

15
fflF 17

31
Ø1F 37

47
/2F 57

63
?3F 77

79
O4F 117

95
˙5F 137

111
o6F 157

127
¨7F 177

298

COMPUTER MODERN TYPEWRITER FONT LAYOUT
0

Γ0 0
16

ı10 20
32

 20 40
48

030 60
64

@40 100
80

P50 120
96

‘60 140
112

p70 160
1

∆1 1
17

11 21
33

!21 41
49

131 61
65

A41 101
81

Q51 121
97

a61 141
113

q71 161
2

Θ2 2
18

`12 22
34

"22 42
50

232 62
66

B42 102
82

R52 122
98

b62 142
114

r72 162
3

Λ3 3
19

´13 23
35

#23 43
51

333 63
67

C43 103
83

S53 123
99

c63 143
115

s73 163
4

Ξ4 4
20

ˇ14 24
36

$24 44
52

434 64
68

D44 104
84

T54 124
100

d64 144
116

t74 164
5

Π5 5
21

˘15 25
37

%25 45
53

535 65
69

E45 105
85

U55 125
101

e65 145
117

u75 165
6

Σ6 6
22

¯16 26
38

&26 46
54

636 66
70

F46 106
86

V56 126
102

f66 146
118

v76 166
7

Υ7 7
23

˚17 27
39

’27 47
55

737 67
71

G47 107
87

W57 127
103

g67 147
119

w77 167
8

Φ8 10
24

¸18 30
40

(28 50
56

838 70
72

H48 110
88

X58 130
104

h68 150
120

x78 170
9

Ψ9 11
25

ß19 31
41

)29 51
57

939 71
73

I49 111
89

Y59 131
105

i69 151
121

y79 171
10

ΩA 12
26

æ1A 32
42

*2A 52
58

:3A 72
74

J4A 112
90

Z5A 132
106

j6A 152
122

z7A 172
11

↑B 13
27

œ1B 33
43

+2B 53
59

;3B 73
75

K4B 113
91

[5B 133
107

k6B 153
123

{7B 173
12

↓C 14
28

ø1C 34
44

,2C 54
60

<3C 74
76

L4C 114
92

\5C 134
108

l6C 154
124

|7C 174
13

'D 15
29

Æ1D 35
45

-2D 55
61

=3D 75
77

M4D 115
93

]5D 135
109

m6D 155
125

}7D 175
14

¡E 16
30

Œ1E 36
46

.2E 56
62

>3E 76
78

N4E 116
94

^5E 136
110

n6E 156
126

~7E 176
15

¿F 17
31

Ø1F 37
47

/2F 57
63

?3F 77
79

O4F 117
95

_5F 137
111

o6F 157
127

¨7F 177

299

COMPUTER MODERN ITALIC FONT LAYOUT
0

Γ0 0
16

ı10 20
32

 20 40
48

030 60
64

@40 100
80

P50 120
96

‘60 140
112

p70 160
1

∆1 1
17

11 21
33

!21 41
49

131 61
65

A41 101
81

Q51 121
97

a61 141
113

q71 161
2

Θ2 2
18

`12 22
34

”22 42
50

232 62
66

B42 102
82

R52 122
98

b62 142
114

r72 162
3

Λ3 3
19

´13 23
35

#23 43
51

333 63
67

C43 103
83

S53 123
99

c63 143
115

s73 163
4

Ξ4 4
20

ˇ14 24
36

£24 44
52

434 64
68

D44 104
84

T54 124
100

d64 144
116

t74 164
5

Π5 5
21

˘15 25
37

%25 45
53

535 65
69

E45 105
85

U55 125
101

e65 145
117

u75 165
6

Σ6 6
22

¯16 26
38

&26 46
54

636 66
70

F46 106
86

V56 126
102

f66 146
118

v76 166
7

Υ7 7
23

˚17 27
39

’27 47
55

737 67
71

G47 107
87

W57 127
103

g67 147
119

w77 167
8

Φ8 10
24

¸18 30
40

(28 50
56

838 70
72

H48 110
88

X58 130
104

h68 150
120

x78 170
9

Ψ9 11
25

ß19 31
41

)29 51
57

939 71
73

I49 111
89

Y59 131
105

i69 151
121

y79 171
10

ΩA 12
26

æ1A 32
42

*2A 52
58

:3A 72
74

J4A 112
90

Z5A 132
106

j6A 152
122

z7A 172
11

ffB 13
27

œ1B 33
43

+2B 53
59

;3B 73
75

K4B 113
91

[5B 133
107

k6B 153
123

–7B 173
12

fiC 14
28

ø1C 34
44

,2C 54
60

¡3C 74
76

L4C 114
92

“5C 134
108

l6C 154
124

—7C 174
13

flD 15
29

Æ1D 35
45

-2D 55
61

=3D 75
77

M4D 115
93

]5D 135
109

m6D 155
125

˝7D 175
14

ffiE 16
30

Œ1E 36
46

.2E 56
62

¿3E 76
78

N4E 116
94

ˆ5E 136
110

n6E 156
126

˜7E 176
15

fflF 17
31

Ø1F 37
47

/2F 57
63

?3F 77
79

O4F 117
95

˙5F 137
111

o6F 157
127

¨7F 177

300

COMPUTER MODERN SYMBOL FONT
0 −0 0

16 �10 20
32←20 40

48 ′30 60
64 ℵ40 100

80 P50 120
96 `60 140

112√
70 160

1 ·1 1
17 ≡11 21

33
→21 41

49∞31 61
65 A41 101

81 Q51 121
97 a61 141

113q71 161
2 ×2 2

18
⊆12 22

34
↑22 42

50 ∈32 62
66 B42 102

82 R52 122
98 b62 142

114∇72 162
3 ∗3 3

19 ⊇13 23
35 ↓23 43

51 333 63
67 C43 103

83 S53 123
99 c63 143

115∫73 163
4 ÷4 4

20
≤14 24

36
↔24 44

52434 64
68 D44 104

84 T54 124
100d64 144

116t74 164
5 �5 5

21 ≥15 25
37↗25 45

53535 65
69 E45 105

85 U55 125
101e65 145

117u75 165
6 ±6 6

22 �16 26
38↘26 46

54 636 66
70 F46 106

86 V56 126
102{66 146

118v76 166
7
∓7 7

23 �17 27
39
'27 47

55 737 67
71 G47 107

87W57 127
103}67 147

119w77 167
8 ⊕8 10

24 ∼18 30
40⇐28 50

56 ∀38 70
72 H48 110

88 X58 130
104〈68 150

120§78 170
9 	9 11

25 ≈19 31
41⇒29 51

57 ∃39 71
73 I49 111

89 Y59 131
105〉69 151

121†79 171
10
⊗A 12

26 ⊂1A 32
42 ⇑2A 52

58 ¬3A 72
74 J4A 112

90 Z5A 132
106|6A 152

122‡7A 172
11 �B 13

27 ⊃1B 33
43 ⇓2B 53

59 ∅3B 73
75 K4B 113

91 ∪5B 133
107‖6B 153

123¶7B 173
12 �C 14

28�1C 34
44⇔2C 54

60 <3C 74
76 L4C 114

92 ∩5C 134
108l6C 154

124♣7C 174
13©D 15

29�1D 35
45↖2D 55

61 =3D 75
77M4D 115

93]5D 135
109m6D 155

125♦7D 175
14 ◦E 16

30 ≺1E 36
46↙2E 56

62 >3E 76
78N4E 116

94 ∧5E 136
110\6E 156

126♥7E 176
15 •F 17

31 �1F 37
47 ∝2F 57

63 ⊥3F 77
79
O4F 117

95 ∨5F 137
111o6F 157

127♠7F 177

301

COMPUTER MODERN MATH EXTENSION FONT
0 (
0 0

16 (
10 20

32 (
20 40

48
30 60

64
40 100

80 ∑
50 120

96 ∐
60 140

112√
70 160

1)
1 1

17)
11 21

33)
21 41

49
31 61

65
41 101

81∏
51 121

97∐
61 141

113√
71 161

2 [
2 2

18 (
12 22

34 [
22 42

50
32 62

66
42 102

82 ∫
52 122

98 ̂
62 142

114√
72 162

3]
3 3

19)
13 23

35]
23 43

51
33 63

67
43 103

83 ⋃
53 123

99̂
63 143

115√
73 163

4 ⌊
4 4

20 [
14 24

36 ⌊
24 44

52
34 64

68 〈
44 104

84 ⋂
54 124

100̂
64 144

116√
74 164

5 ⌋
5 5

21]
15 25

37 ⌋
25 45

53
35 65

69 〉
45 105

85 ⊎
55 125

101˜
65 145

117√
75 165

6 ⌈
6 6

22 ⌊
16 26

38 ⌈
26 46

54
36 66

70 ⊔
46 106

86 ∧
56 126

102˜
66 146

118√
76 166

7 ⌉
7 7

23 ⌋
17 27

39 ⌉
27 47

55
37 67

71⊔
47 107

87 ∨
57 127

103˜
67 147

119w
77 167

8 {
8 10

24 ⌈
18 30

40 {
28 50

56
38 70

72 ∮
48 110

88∑
58 130

104[
68 150

120x
78 170

9 }
9 11

25 ⌉
19 31

41 }
29 51

57
39 71

73 ∮
49 111

89∏
59 131

105]
69 151

121y
79 171

10 〈
A 12

26 {
1A 32

42 〈
2A 52

58
3A 72

74 ⊙
4A 112

90 ∫
5A 132

106⌊
6A 152

122︷
7A 172

11 〉
B 13

27 }
1B 33

43 〉
2B 53

59
3B 73

75⊙
4B 113

91⋃
5B 133

107⌋
6B 153

123︷
7B 173

12 ∣
C 14

28 〈
1C 34

44/
2C 54

60
3C 74

76 ⊕
4C 114

92 ⋂
5C 134

108⌈
6C 154

124︸
7C 174

13 ∥
D 15

29 〉
1D 35

45∖
2D 55

61
3D 75

77⊕
4D 115

93⊎
5D 135

109⌉
6D 155

125︸
7D 175

14 /
E 16

30 /
1E 36

46 /
2E 56

62
3E 76

78 ⊗
4E 116

94 ∧
5E 136

110{
6E 156

126~
7E 176

15 ∖
F 17

31∖
1F 37

47 ∖
2F 57

63
3F 77

79⊗
4F 117

95∨
5F 137

111}
6F 157

127�
7F 177

302

38.3 Plain TEX math symbols
38.3.1 Mathcharacter codes

The following characters have been defined in a
\mathcode〈8-bit number〉〈equals〉〈15-bit number〉

assignment.

Character \mathcode Class Family Hex position

. "013A ordinary 1 3A
/ "013D 3D
\ "026E 2 6E
| "026A 6A
+ "202B binary operation 0 2B
- "2200 2 00
* "2203 03
: "303A relation 0 3A
= "303D 3D
< "313C 1 3C
> "313E 3E
("4028 open symbol 0 28
["405B 5B
{ "4266 2 66
! "5021 closing symbol 0 21
) "5029 29
? "503F 3F
] "505D 5D
} "5267 2 67
; "603B punctuation 0 3B
, "613B 1 3B
 "8000
’ "8000
_ "8000

303

38.3.2 Delimiter codes

The following characters have been defined in a
\delcode〈8-bit number〉〈equals〉〈24-bit number〉

assignment. They can be used with \left and \right.

small variant large variant
Character \delcode Family Hex position Family Hex position

("028300 0 28 3 00
) "029301 0 29 3 01
["05B302 0 5B 3 02
] "05D303 0 5D 3 03
< "26830A 2 68 3 0A
> "26930B 2 69 3 0B
/ "02F30E 0 2F 3 0E
| "26A30C 2 6A 3 0C
\ "26E30F 2 6E 3 0F

304

38.3.3 〈mathchardef tokens〉: ordinary symbols

The following characters have been defined in a
\mathchardef〈control sequence〉〈equals〉〈15-bit number〉

assignment.

Symbol Control Sequence \mathcode Family Hex position

∂ \partial "0140 1 40
[\flat "015B 5B
\ \natural "015C 5C
] \sharp "015D 5D
` \ell "0160 60
ı \imath "017B 7B
 \jmath "017C 7C
℘ \wp "017D 7D
′ \prime "0230 2 30
∞ \infty "0231 31
4 \triangle "0234 34
∀ \forall "0238 38
∃ \exists "0239 39
¬ \neg "023A 3A
∅ \emptyset "023B 3B
< \Re "023C 3C
= \Im "023D 3D
> \top "023E 3E
⊥ \bot "023F 3F
ℵ \aleph "0240 40
∇ \nabla "0272 72
♣ \clubsuit "027C 7C
♦ \diamondsuit "027D 7D
♥ \heartsuit "027E 7E
♠ \spadesuit "027F 7F

305

38.3.4 〈mathchardef tokens〉: large operators

The following characters have been defined in a
\mathchardef〈control sequence〉〈equals〉〈15-bit number〉

assignment.

Symbol Control Sequence \mathcode Family Hex position

∫ ∫ \smallint "1273 2 73⊔⊔
\bigsqcup "1346 3 46∮ ∮
\ointop "1348 48⊙⊙
\bigodot "134A 4A⊕⊕
\bigoplus "134C 4C⊗⊗
\bigotimes "134E 4E∑∑
\sum "1350 50∏∏
\prod "1351 51∫ ∫
\intop "1352 52⋃⋃
\bigcup "1353 53⋂⋂
\bigcap "1354 54⊎⊎
\biguplus "1355 55∧∧
\bigwedge "1356 56∨∨
\bigvee "1357 57∐∐
\coprod "1360 60

306

38.3.5 〈mathchardef tokens〉: binary operations

The following characters have been defined in a
\mathchardef〈control sequence〉〈equals〉〈15-bit number〉

assignment.

Symbol Control Sequence \mathcode Family Hex position

. \triangleright "212E 1 2E
/ \triangleleft "212F 2F
? \star "213F 3F
· \cdot "2201 2 01
× \times "2202 02
∗ \ast "2203 03
÷ \div "2204 04
� \diamond "2205 05
± \pm "2206 06
∓ \mp "2207 07
⊕ \oplus "2208 08
	 \ominus "2209 09
⊗ \otimes "220A 0A
� \oslash "220B 0B
� \odot "220C 0C
© \bigcirc "220D 0D
◦ \circ "220E 0E
• \bullet "220F 0F
4 \bigtriangleup "2234 34
5 \bigtriangledown "2235 35
∪ \cup "225B 5B
∩ \cap "225C 5C
] \uplus "225D 5D
∧ \wedge "225E 5E
∨ \vee "225F 5F
\ \setminus "226E 6E
o \wr "226F 6F
q \amalg "2271 71
t \sqcup "2274 74
u \sqcap "2275 75
† \dagger "2279 79
‡ \ddagger "227A 7A

307

38.3.6 〈mathchardef tokens〉: relations

The following characters have been defined in a

\mathchardef〈control sequence〉〈equals〉〈15-bit number〉
assignment.

Symbol Control Sequence \mathcode Family Hex position

↼ \leftharpoonup "3128 1 28
↽ \leftharpoondown "3129 29
⇀ \rightharpoonup "312A 2A
⇁ \rightharpoondown "312B 2B
^ \smile "315E 5E
_ \frown "315F 5F
� \asymp "3210 2 10
≡ \equiv "3211 11
⊆ \subseteq "3212 12
⊇ \supseteq "3213 13
≤ \leq "3214 14
≥ \geq "3215 15
� \preceq "3216 16
� \succeq "3217 17
∼ \sim "3218 18
≈ \approx "3219 19
⊂ \subset "321A 1A
⊃ \supset "321B 1B
� \ll "321C 1C
� \gg "321D 1D
≺ \prec "321E 1E
� \succ "321F 1F
← \leftarrow "3220 20
→ \rightarrow "3221 21
↔ \leftrightarrow "3224 24
↗ \nearrow "3225 25
↘ \searrow "3226 26
' \simeq "3227 27
⇐ \Leftarrow "3228 28
⇒ \Rightarrow "3229 29
⇔ \Leftrightarrow "322C 2C
↖ \nwarrow "322D 2D
↙ \swarrow "322E 2E
∝ \propto "322F 2F
∈ \in "3232 32
3 \ni "3233 33
6 \not "3236 36

308

7 \mapstochar "3237 37
⊥ \perp "323F 3F
` \vdash "3260 60
a \dashv "3261 61
| \mid "326A 6A
‖ \parallel "326B 6B
v \sqsubseteq "3276 76
w \sqsupseteq "3277 77

38.3.7 \delimiter macros

The following characters have been defined in a
\def〈control sequence〉{\delimiter〈27-bit number〉}

assignment.

Delimiters
Symbol Control Sequence Hex code Function \lmoustache "4000340 open symbol \rmoustache "5000341 closing symbol \lgroup "400033A open symbol \rgroup "500033B closing symbol
| \arrowvert "33C ordinary
‖ \Arrowvert "33D ordinary \bracevert "33E ordinary
‖ \Vert "26B30D ordinary
| \vert "26A30C ordinary
↑ \uparrow "3222378 relation
↓ \downarrow "3223379 relation
l \updownarrow "326C33F relation
⇑ \Uparrow "322A37E relation
⇓ \Downarrow "322B37F relation
m \Updownarrow "326D377 relation
\ \backslash "26E30F ordinary
〉 \rangle "526930B closing symbol
〈 \langle "426830A open symbol
} \rbrace "5267309 closing symbol
{ \lbrace "4266308 open symbol
e \rceil "5265307 closing symbol
d \lceil "4264306 open symbol
c \rfloor "5263305 closing symbol
b \lfloor "4262304 open symbol

309

Index

LATEX, 260
TEX version 2, 279
ˆˆ replacement, 32
˜, 187
WEB, 265
dvi file, 261
tfm files, 54

accents, 46
accents in math mode, 194
active character, 117
alignment tab, 217
alignments, 215
argument, 111
arithmetic, 84

fixed-point, 85
floating-point, 84
on glue, 91

axis of math formulas, 204

badness
and line breaking, 176
calculation, 95

baseline
distance, 157

m , 275
box, 57

dimensions, 60
registers, 58
unboxing, 67

box
overfull, 65
underfull, 65

boxes
text in, 68

braces, 107
breakpoints in math lists, 207
breakpoints in vertical lists, 228

breakpoints, computation of, 229

category codes, 29
centring of math formulas, 204
character

codes, 43
character

active, 117
active, and \noexpand, 130
escape, 33, 35
hyphen, 180
implicit, 45
parameter, 33, 114
space, 34

codenames, 49
command

primitive, 118
Computer Modern typefaces, 264
conditional, 140
conditionals

evaluation of, 145
control

sequence, 31
space, 31, 187
symbol, 31

cramped styles, 202
current page, 227

date, 263
definition

macro, 110
delimiter

group, 106
delimiter codes, 192
delimiter sizes, 192
delimiters, 191
demerits, 177
device drivers, 262, 264

310

discardable items, 73
discretionary hyphen, 180
discretionary item, 180
display alignment, 216
displays, 210
displays, non-centred, 214

equation numbering, 213
error patching, 272
evaluation

conditionals, 145
expansion, 125

expandable control sequences, 125
extension fonts, 193

font
dimensions, 54

font families, 196
font files, 264
font metrics, 263
font tables, 298
fonts, 52
format files, 257
frenchspacing, 188

generalized fractions, 206
global statements, 106
glue, 87

setting, 94
arithmetic on, 91
shrink component of, 93
stretch component of, 93

glue
interline, 157

grouping, 105

hanging
indentation, 170

horizontal alignment, 216
horizontal commands, 74
hyphenation, 181

m , 257
input

stack, 118
input files, 245
insertions, 240

integers, 79
italic correction, 55

job, 254

kerning, 55
keywords, 278

language, 183
language

current, 183
languages, 181
leaders, 99
leaders

rule, 100
ligatures, 56
line

end, 29, 39
input, 29
width, 170

line
empty, 35

line breaking
badness, 176

list
horizontal, 73
token, 152
vertical, 73

lists
horizontal

breakpoints in, 177
penalties in , 177

local statements, 106
log file, 255
Lollipop, 261
lowercase, 48

machine dependence, 212
machine independence, 29
macro, 109
macro

outer, 110
magnification, 262
marks, 236
math characters, 191
math classes, 203

311

math modes, 201
math shift character, 201
math spacing, 205
math styles, 201
math symbols, lists of, 303
math unit, 205
migrating material, 76
mode, 72
mode

horizontal, 72
internal, 74
restricted, 74
vertical, 73

mu glue, 205

number
conversion, 83
roman numerals, 83

numbers, 79

output routine, 234
overflow errors, 273

page breaking, 229
page builder, 227
page depth, 225
page length, 227
page numbering, 237
page positioning, 224
paragraph

breaking into lines, 179
end, 166
shape, 170
start, 162

parameter, 111
parameter

delimited, 112
undelimited, 112

Pascal, 265
penalties in math mode, 207
penalties in vertical mode, 228
PostScript, 262
prefixes

macro, 110
primitive commands, 118

radicals, 193

recent contributions, 227
recursion, 118
registers, allocation of, 251
rules, 98
rules in alignments, 221
run modes, 255

save stack, 105
shrink, 93
space

factor, 186
optional , 36
token, 38

space
control –, 187
funny, 38

space, optional, 278
spacefactor code, 188
spacing, 185
specials, 262
state

internal, 31
statements

global, 106
local, 106

statistics, 267
streams, 246
stretch, 93
subscript, 202
successors, 192
superscript, 202
symbol font, 208

m , 257
m version 3, 65, 182, 243
table, character codes, 297
table, ASCII, 296
tables, 215
tables, font, 298
tie, 187
time, 263
token

lists, 152
token

space, 36
tracing, 267

312

TUG, 265
TUGboat, 265

units of measurement, 92
uppercase, 48

verbatim mode, 123
vertical

commands, 74
vertical alignment, 216
m , 257
virtual fonts, 263

whatsits, 247

313

Bibliography

[1] W. Appelt. TEX für Fortgeschrittene. Addison-Wesley Verlag, 1988. 277
[2] B. Beeton. Controlling <ctrl-M>; ruling the depths. TUGboat, 9:182–183, 1988.

39
[3] B. Beeton. Additional font and glyph attributes for processing of mathematics,

1991. document N1174 Rev.,of ISO/IEC JTC1/SC18/WG8. 208
[4] K. Berry. Eplain. TUGboat, 11:571–572, 1990. 261
[5] J. Braams. Babel, a language option for LATEX. TUGboat, 12:291–301, 1991. 181
[6] J. Braams, V. Eijkhout, and N.A.F.M. Poppelier. The development of national

LATEX styles. TUGboat, 10:401–406, 1989. 260
[7] M.J. Downes. Line breaking in \unhboxed text. TUGboat, 11:605–612. 68
[8] V. Eijkhout. An indentation scheme. TUGboat, 11:613–616. 163
[9] V. Eijkhout. A paragraph skip scheme. TUGboat, 11:616–619. 164

[10] V. Eijkhout. Unusual paragraph shapes. TUGboat, 11:51–53. 71, 174
[11] V. Eijkhout. Oral TEX. TUGboat, 12:272–276, 1991. 139, 149, 150
[12] V. Eijkhout and A. Lenstra. The document style designer as a separate entity.

TUGboat, 12:31–34, 1991. 261
[13] D. Guenther. TEX T1 goes public domain. TUGboat, 11:54–55, 1990. 261
[14] Hart’s Rules for Compositors and Readers at the Oxford University Press. Oxford

University Press, 1983. 39th edition. 189
[15] A. Hendrikson. MacroTEX, A TEX Macro Toolkit. TEX nology Inc, 1991. 261
[16] A. Jeffrey. Lists in TEX’s mouth. TUGboat, 11:237–245, 1990. 139
[17] D.E. Knuth. Computer Modern Typefaces. Addison-Wesley. 55
[18] D.E. Knuth. The errors of TEX. Software Practice and Experience, 19:607–681.

279
[19] D.E. Knuth. Literate programming. Computer J., 27:97–111. 265
[20] D.E. Knuth. The new versions of TEX and Metafont. TUGboat, 10:325–327. 56,

280
[21] D.E. Knuth. A torture test for TEX. Technical report, Stanford Computer Science

Report 1027, Stanford, California. 84
[22] D.E. Knuth. Typesetting concrete mathematics. TUGboat, 10:31–36. 265
[23] D.E. Knuth. TEX: the Program. Addison-Wesley, 1986. 44, 54, 257, 261, 263
[24] D.E. Knuth. Virtual fonts: more fun for grand wizards. TUGboat, 11:13–23,

1990. 53, 263
[25] D.E. Knuth. The TEX book. Addison-Wesley, reprinted with corrections 1989. 38,

49, 273, 275

314

[26] D.E. Knuth and D.R. Fuchs. TEX ware. Technical report, 1986. Stanford Com-
puter Science report 86–1097. 263

[27] D.E. Knuth and M.F. Plass. Breaking paragraphs into lines. Software practice and
experience, 11:1119–1184, 1981. 176, 177

[28] G. Kuiken. Additional hyphenation patterns. TUGboat, 11:24–25, 1990. 181
[29] L. Lamport. LATEX, a Document Preparation System. Addison-Wesley, 1986. 260
[30] F.M. Liang. Word hy-phen-a-tion by com-pu-ter. PhD thesis, 1983. 181, 275
[31] S. Maus. Looking ahead for a 〈box〉. TUGboat, 11:612–613, 1990. 128
[32] S. Maus. An expansion power lemma. TUGboat, 12:277, 1991. 139
[33] F. Mittelbach and R. Schöpf. LATEX3. TUGboat, 12. 260
[34] F. Mittelbach and R. Schöpf. With LATEX into the nineties. TUGboat, 10:681–690,

1989. 260
[35] E. Myers and F.E. Paige. TEX sis – TEX macros for physicists. Macros and

manual available by anonymous ftp from lifshitz.ph.utexas.edu (128.83.131.57).
261

[36] H. Partl. German TEX. TUGboat, 9:70–72, 1988. 181
[37] Z. Rubinstein. Printing annotated chess literature in natural notation. TUGboat,

10:387–390, 1989. 119
[38] D. Salomon. Output routines: Examples and techniques. part i: Introduction and

examples. TUGboat, 11:69–85, 1990. 239
[39] D. Salomon. Output routines: Examples and techniques. part ii: OTR techniques.

TUGboat, 11:212–236, 1990. 239
[40] D. Salomon. Output routines: Examples and techniques. part iii: Insertions. TUG-

boat, 11:588–605, 1990. 244
[41] W. Sewell. Weaving a Program: Literate Programming in WEB. Van Nostrand Rein-

hold, 1989. 265
[42] R. Southall. Designing a new typeface with metafont. In TEX for scientific do-

cumentation, Lecture Notes in Computer Science 236. Springer Verlag, 1984. 53,
264

[43] M. Spivak. The Joy of TEX. American Mathematical Society, 1986. 260
[44] M. Spivak. LAMSTEX, the Synthesis. The TEX plorators Corporation, 1989. 260
[45] K. Thull. The virtual memory management of public TEX. TUGboat, 10:15–22,

1989. 275
[46] J. Tschichold. Ausgewählte Aufsätze über Fragen der Gestalt des Buches und der

Typographie. Birkhäuser Verlag, 1975. 169
[47] P. Tutelaers. A font and a style for typesetting chess using LATEX or plain TEX.

TUGboat, 13, 1991. 119
[48] D.B. Updike. Printing Types. Harvard University Press, 1937. (reprinted 1980,

New York NY: Dover Publications). 264
[49] S. von Bechtolsheim. A tutorial on \futurelet. TUGboat, 9:276–278, 1988.

122
[50] M. Vox. Caractère, 1955. 264
[51] M. Weinstein. Everything you wanted to know about phyzzx but didn’t know to

ask. Technical report, 1984. Stanford Linear Accelerator Publication, SLAC-TN-
84-7. 261

[52] J.V. White. Graphic Design for the Electronic Age. Watson-Guptill, 1988. 160

315

Change log

Version 1.1
Small remark about \afterassignment after macro definitions.

Trouble with indexing macros fixed, I hope.

Separate letter and a4 versions.

Better intro for the chapter 20 on spacing.

316

	License
	 The Structure of the TeX Processor
	 Four TeX processors
	 The input processor
	 Character input
	 Two-level input processing

	 The expansion processor
	 The process of expansion
	 Special cases: `expandafter, `noexpand, and `the
	 Braces in the expansion processor

	 The execution processor
	 The visual processor
	 Examples
	 Skipped spaces
	 Internal quantities and their representations

	 Category Codes and Internal States
	 Introduction
	 Initial processing
	 Category codes
	 From characters to tokens
	 The input processor as a finite state automaton
	 State N: new line
	 State S: skipping spaces
	 State M: middle of line

	 Accessing the full character set
	 Transitions between internal states
	 0: escape character
	 1--4, 7--8, 11--13: non-blank characters
	 5: end of line
	 6: parameter
	 7: superscript
	 9: ignored character
	 10: space
	 14: comment
	 15: invalid

	 Letters and other characters
	 The 92par token
	 Spaces
	 Skipped spaces
	 Optional spaces
	 Ignored and obeyed spaces
	 More ignored spaces
	 "426830A space token"526930B
	 Control space
	 `32'

	 More about line ends
	 Obeylines
	 Changing the `endlinechar
	 More remarks about the end-of-line character

	 More about the input processor
	 The input processor as a separate process
	 The input processor not as a separate process
	 Recursive invocation of the input processor

	 The @ convention

	 Characters
	 Character codes
	 Control sequences for characters
	 Denoting characters to be typeset: `char
	 Implicit character tokens: `let

	 Accents
	 Testing characters
	 Uppercase and lowercase
	 Uppercase and lowercase codes
	 Uppercase and lowercase commands
	 Uppercase and lowercase forms of keywords
	 Creative use of `uppercase and `lowercase

	 Codes of a character
	 Converting tokens into character strings
	 Output of control sequences
	 Category codes of a `string

	 Fonts
	 Fonts
	 Font declaration
	 Fonts and tfm files
	 Querying the current font and font names
	 `nullfont

	 Font information
	 Font dimensions
	 Kerning
	 Italic correction
	 Ligatures
	 Boundary ligatures

	 Boxes
	 Boxes
	 Box registers
	 Allocation: `newbox
	 Usage: `setbox, `box, `copy
	 Testing: `ifvoid, `ifhbox, `ifvbox
	 The `lastbox

	 Natural dimensions of boxes
	 Dimensions of created horizontal boxes
	 Dimensions of created vertical boxes
	 Examples

	 More about box dimensions
	 Predetermined dimensions
	 Changes to box dimensions
	 Moving boxes around
	 Box dimensions and box placement
	 Boxes and negative glue

	 Overfull and underfull boxes
	 Opening and closing boxes
	 Unboxing
	 Text in boxes
	 Assorted remarks
	 Forgetting the `box
	 Special-purpose boxes
	 The height of a vertical box in horizontal mode
	 More subtleties with vertical boxes
	 Hanging the `lastbox back in the list
	 Dissecting paragraphs with `lastbox

	 Horizontal and Vertical Mode
	 Horizontal and vertical mode
	 Horizontal mode
	 Vertical mode

	 Horizontal and vertical commands
	 The internal modes
	 Restricted horizontal mode
	 Internal vertical mode

	 Boxes and modes
	 What box do you use in what mode?
	 What mode holds in what box?
	 Mode-dependent behaviour of boxes

	 Modes and glue
	 Migrating material
	 `vadjust

	 Testing modes

	 Numbers
	 Numbers and "426830A number"526930B s
	 Integers
	 Denotations: integers
	 Denotations: characters
	 Internal integers
	 Internal integers: other codes of a character
	 "426830A special integer"526930B
	 Other internal quantities: coersion to integer
	 Trailing spaces

	 Numbers
	 Integer registers
	 Arithmetic
	 Arithmetic statements
	 Floating-point arithmetic
	 Fixed-point arithmetic

	 Number testing
	 Remarks
	 Character constants
	 Expanding too far / how far

	 Dimensions and Glue
	 Definition of "426830A glue"526930B and "426830A dimen"526930B
	 Definition of dimensions
	 Definition of glue
	 Conversion of "426830A glue"526930B to "426830A dimen"526930B
	 Registers for `dimen and `skip
	 Arithmetic: addition
	 Arithmetic: multiplication and division

	 More about dimensions
	 Units of measurement
	 Dimension testing
	 Defined dimensions

	 More about glue
	 Stretch and shrink
	 Glue setting
	 Badness
	 Glue and breaking
	 `kern
	 Glue and modes
	 The last glue item in a list: backspacing
	 Examples of backspacing
	 Glue in trace output

	 Rules and Leaders
	 Rules
	 Rule dimensions

	 Leaders
	 Rule leaders
	 Box leaders
	 Evenly spaced leaders

	 Assorted remarks
	 Rules and modes
	 Ending a paragraph with leaders
	 Leaders and box registers
	 Output in leader boxes
	 Box leaders in trace output
	 Leaders and shifted margins

	 Grouping
	 The grouping mechanism
	 Local and global assignments
	 Group delimiters
	 More about braces
	 Brace counters
	 The brace as a token
	 Open and closing brace control symbols

	 Macros
	 Introduction
	 Layout of a macro definition
	 Prefixes
	 The definition type
	 The parameter text
	 Undelimited parameters
	 Delimited parameters
	 Examples with delimited arguments
	 Empty arguments
	 The macro parameter character
	 Brace delimiting

	 Construction of control sequences
	 Token assignments by `let and `futurelet
	 `let
	 `futurelet

	 Assorted remarks
	 Active characters
	 Macros versus primitives
	 Tail recursion

	 Macro techniques
	 Unknown number of arguments
	 Examining the argument
	 Optional macro parameters with `futurelet
	 Two-step macros
	 A comment environment

	 Expansion
	 Introduction
	 Ordinary expansion
	 Reversing expansion order
	 One step expansion: `expandafter
	 Total expansion: `edef
	 `afterassignment
	 `aftergroup

	 Preventing expansion
	 `noexpand
	 `noexpand and active characters

	 `relax
	 `relax and `csname
	 Preventing expansion with `relax
	 TeX inserts a `relax
	 The value of non-macros; `the

	 Examples
	 Expanding after
	 Defining inside an `edef
	 Expansion and `write
	 Controlled expansion inside an `edef
	 Multiple prevention of expansion
	 More examples with `relax
	 Example: category code saving and restoring
	 Combining `aftergroup and boxes
	 More expansion

	 Conditionals
	 The shape of conditionals
	 Character and control sequence tests
	 `if
	 `ifcat
	 `ifx

	 Mode tests
	 Numerical tests
	 Other tests
	 Dimension testing
	 Box tests
	 I/O tests
	 Case statement
	 Special tests

	 The `newif macro
	 Evaluation of conditionals
	 Assorted remarks
	 The test gobbles up tokens
	 The test wants to gobble up the `else or `fi
	 Macros and conditionals; the use of `expandafter
	 Incorrect matching
	 Conditionals and grouping
	 A trick
	 More examples of expansion in conditionals

	 Token Lists
	 Token lists
	 Use of token lists
	 "426830A token parameter"526930B
	 Token list registers
	 Examples
	 Operations on token lists: stack macros
	 Executing token lists

	 Baseline Distances
	 Interline glue
	 The perceived depth of boxes
	 Terminology
	 Additional remarks

	 Paragraph Start
	 When does a paragraph start
	 What happens when a paragraph starts
	 Assorted remarks
	 Starting a paragraph with a box
	 Starting a paragraph with a group

	 Examples
	 Stretchable indentation
	 Suppressing indentation
	 An indentation scheme
	 A paragraph skip scheme

	 Paragraph End
	 The way paragraphs end
	 The `par command and the `par token
	 Paragraph filling: `parfillskip

	 Assorted remarks
	 Ending a paragraph and a group at the same time
	 Ending a paragraph with `hfill`break
	 Ending a paragraph with a rule
	 No page breaks in between paragraphs
	 Finite `parfillskip
	 A precaution for paragraphs that do not indent

	 Paragraph Shape
	 The width of text lines
	 Shape parameters
	 Hanging indentation
	 General paragraph shapes: `parshape

	 Assorted remarks
	 Centred last lines
	 Indenting into the margin
	 Hang a paragraph from an object
	 Another approach to hanging indentation
	 Hanging indentation versus `leftskip shifting
	 More examples

	 Line Breaking
	 Paragraph break cost calculation
	 Badness
	 Penalties and other break locations
	 Demerits
	 The number of lines of a paragraph
	 Between the lines

	 The process of breaking
	 Three passes
	 Tolerance values

	 Discretionaries
	 Hyphens and discretionaries
	 Examples of discretionaries

	 Hyphenation
	 Start of a word
	 End of a word
	 TeX2 versus TeX3
	 Patterns and exceptions

	 Switching hyphenation patterns

	 Spacing
	 Introduction
	 Automatic interword space
	 User interword space
	 Control space and tie
	 More on the space factor
	 Space factor assignments
	 Punctuation
	 Other non-letters
	 Other influences on the space factor

	 Characters in Math Mode
	 Mathematical characters
	 Delimiters
	 Delimiter codes
	 Explicit `delimiter commands
	 Finding a delimiter; successors
	 `big, `Big, `bigg, and `Bigg delimiter macros

	 Radicals
	 Math accents

	 Fonts in Formulas
	 Determining the font of a character in math mode
	 Initial family settings
	 Family definition
	 Some specific font changes
	 Change the font of ordinary characters and uppercase Greek
	 Change uppercase Greek independent of text font
	 Change the font of lowercase Greek

	 Assorted remarks
	 New fonts in formulas
	 Evaluating the families

	 Mathematics Typesetting
	 Math modes
	 Styles in math mode
	 Superscripts and subscripts
	 Choice of styles

	 Classes of mathematical objects
	 Large operators and their limits
	 Vertical centring: `vcenter
	 Mathematical spacing: mu glue
	 Classification of mu glue
	 Muskip registers
	 Other spaces in math mode

	 Generalized fractions
	 Underlining, overlining
	 Line breaking in math formulas
	 Font dimensions of families 2 and 3
	 Symbol font attributes
	 Extension font attributes
	 Example: subscript lowering

	 Display Math
	 Displays
	 Displays in paragraphs
	 Vertical material around displays
	 Glue setting of the display math list
	 Centring the display formula: displacement
	 Equation numbers
	 Ordinary equation numbers
	 The equation number on a separate line

	 Non-centred displays

	 Alignment
	 Introduction
	 Horizontal and vertical alignment
	 Horizontal alignments: `halign
	 Vertical alignments: `valign
	 Material between the lines: `noalign
	 Size of the alignment

	 The preamble
	 Infinite preambles
	 Brace counting in preambles
	 Expansion in the preamble
	 `tabskip

	 The alignment
	 Reading an entry
	 Alternate specifications: `omit
	 Spanning across multiple columns: `span
	 Rules in alignments
	 End of a line: `cr and `crcr

	 Example: math alignments

	 Page Shape
	 The reference point for global positioning
	 `topskip
	 Page height and depth

	 Page Breaking
	 The current page and the recent contributions
	 Activating the page builder
	 Page length bookkeeping
	 Breakpoints
	 Possible breakpoints
	 Breakpoint penalties
	 Breakpoint computation

	 `vsplit
	 Examples of page breaking
	 Filling up a page
	 Determining the breakpoint
	 The page builder after a paragraph

	 Output Routines
	 The `output token list
	 Output and `box255
	 Marks
	 Assorted remarks
	 Hazards in non-trivial output routines
	 Page numbering
	 Headlines and footlines in plain TeX
	 Example: no widow lines
	 Example: no indentation top of page
	 More examples of output routines

	 Insertions
	 Insertion items
	 Insertion class declaration
	 Insertion parameters
	 Moving insertion items from the contributions list
	 Insertions in the output routine
	 Plain TeX insertions

	 File Input and Output
	 Including files: `input and `endinput
	 File I/O
	 Opening and closing streams
	 Input with `read
	 Output with `write

	 Whatsits
	 Assorted remarks
	 Inspecting input
	 Testing for existence of files
	 Timing problems
	 `message versus `immediate`write16
	 Write inside a vertical box
	 Expansion and spaces in `write and `message

	 Allocation
	 Allocation commands
	 `count, `dimen, `skip, `muskip, `toks
	 `box, `fam, `write, `read, `insert

	 Ground rules for macro writers

	 Running TeX
	 Jobs
	 Start of the job
	 End of the job
	 The log file

	 Run modes

	 TeX and the Outside World
	 TeX, IniTeX, VirTeX
	 Formats: loading
	 Formats: dumping
	 Formats: preloading
	 The knowledge of IniTeX
	 Memory sizes of TeX and IniTeX

	 More about formats
	 Compatibility
	 Preloaded fonts
	 The plain format
	 The LaTeX format
	 Mathematical formats
	 Other formats

	 The dvi file
	 The dvi file format
	 Page identification
	 Magnification

	 Specials
	 Time
	 Fonts
	 Font metrics
	 Virtual fonts
	 Font files
	 Computer Modern

	 TeX and web
	 The TeX Users Group

	 Tracing
	 Meaning and content: `show, `showthe, `meaning
	 Show boxes: `showbox, `tracingoutput
	 Global statistics

	 Errors, Catastrophes, and Help
	 Error messages
	 Overflow errors
	 Buffer size (500)
	 Exception dictionary (307)
	 Font memory (20000)
	 Grouping levels
	 Hash size (2100)
	 Number of strings (3000)
	 Input stack size (200)
	 Main memory size (30000)
	 Parameter stack size (60)
	 Pattern memory (8000)
	 Pattern memory ops per language
	 Pool size (32000)
	 Save size (600)
	 Semantic nest size (40)
	 Text input levels (6)

	 The Grammar of TeX
	 Notations
	 Keywords
	 Specific grammatical terms
	 "426830A equals"526930B
	 "426830A filler"526930B , "426830A general text"526930B
	 `{`} and "426830A left brace"526930B "426830A right brace"526930B
	 "426830A math field"526930B

	 Differences between TeX versions 2 and 3

	 Glossary of TeX Primitives
	 Tables
	 Character tables
	 Computer modern fonts
	 Plain TeX math symbols
	 Mathcharacter codes
	 Delimiter codes
	 "426830A mathchardef tokens"526930B : ordinary symbols
	 "426830A mathchardef tokens"526930B : large operators
	 "426830A mathchardef tokens"526930B : binary operations
	 "426830A mathchardef tokens"526930B : relations
	 `delimiter macros

